211 research outputs found

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    In pursuit of high resolution radar using pursuit algorithms

    Get PDF
    Radar receivers typically employ matched filters designed to maximize signal to noise ratio (SNR) in a single target environment. In a multi-target environment, however, matched filter estimates of target environment often consist of spurious targets because of radar signal sidelobes. As a result, matched filters are not suitable for use in high resolution radars operating in multi-target environments. Assuming a point target model, we show that the radar problem can be formulated as a linear under-determined system with a sparse solution. This suggests that radar can be considered as a sparse signal recovery problem. However, it is shown that the sensing matrix obtained using common radar signals does not usually satisfy the mutual coherence condition. This implies that using recovery techniques available in compressed sensing literature may not result in the optimal solution. In this thesis, we focus on the greedy algorithm approach to solve the problem and show that it naturally yields a quantitative measure for radar resolution. In addition, we show that the limitations of the greedy algorithms can be attributed to the close relation between greedy matching pursuit algorithms and the matched filter. This suggests that improvements to the resolution capability of the greedy pursuit algorithms can be made by using a mismatched signal dictionary. In some cases, unlike the mismatched filter, the proposed mismatched pursuit algorithm is shown to offer improved resolution and stability without any noticeable difference in detection performance. Further improvements in resolution are proposed by using greedy algorithms in a radar system using multiple transmit waveforms. It is shown that while using the greedy algorithms together with linear channel combining can yield significant resolution improvement, a greedy approach using nonlinear channel combining also shows some promise. Finally, a forward-backward greedy algorithm is proposed for target environments comprising of point targets as well as extended targets
    corecore