1,666 research outputs found

    Optimal Explicit Strong Stability Preserving Runge--Kutta Methods with High Linear Order and optimal Nonlinear Order

    Full text link
    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge--Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge--Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge--Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may be still be worthwhile to use methods with higher nonlinear order

    Effective order strong stability preserving Runge–Kutta methods

    Get PDF
    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of effective order methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods—like classical order five methods—require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge–Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice

    Exponential Runge-Kutta methods for stiff kinetic equations

    Full text link
    We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques

    Asymptotic preserving Implicit-Explicit Runge-Kutta methods for non linear kinetic equations

    Full text link
    We discuss Implicit-Explicit (IMEX) Runge Kutta methods which are particularly adapted to stiff kinetic equations of Boltzmann type. We consider both the case of easy invertible collision operators and the challenging case of Boltzmann collision operators. We give sufficient conditions in order that such methods are asymptotic preserving and asymptotically accurate. Their monotonicity properties are also studied. In the case of the Boltzmann operator, the methods are based on the introduction of a penalization technique for the collision integral. This reformulation of the collision operator permits to construct penalized IMEX schemes which work uniformly for a wide range of relaxation times avoiding the expensive implicit resolution of the collision operator. Finally we show some numerical results which confirm the theoretical analysis
    • …
    corecore