259 research outputs found

    Collaborative Decision-Making and the k-Strong Price of Anarchy in Common Interest Games

    Full text link
    The control of large-scale, multi-agent systems often entails distributing decision-making across the system components. However, with advances in communication and computation technologies, we can consider new collaborative decision-making paradigms that exist somewhere between centralized and distributed control. In this work, we seek to understand the benefits and costs of increased collaborative communication in multi-agent systems. We specifically study this in the context of common interest games in which groups of up to k agents can coordinate their actions in maximizing the common objective function. The equilibria that emerge in these systems are the k-strong Nash equilibria of the common interest game; studying the properties of these states can provide relevant insights into the efficacy of inter-agent collaboration. Our contributions come threefold: 1) provide bounds on how well k-strong Nash equilibria approximate the optimal system welfare, formalized by the k-strong price of anarchy, 2) study the run-time and transient performance of collaborative agent-based dynamics, and 3) consider the task of redesigning objectives for groups of agents which improve system performance. We study these three facets generally as well as in the context of resource allocation problems, in which we provide tractable linear programs that give tight bounds on the k-strong price of anarchy.Comment: arXiv admin note: text overlap with arXiv:2308.0804

    Information-Sharing and Privacy in Social Networks

    Get PDF
    We present a new model for reasoning about the way information is shared among friends in a social network, and the resulting ways in which it spreads. Our model formalizes the intuition that revealing personal information in social settings involves a trade-off between the benefits of sharing information with friends, and the risks that additional gossiping will propagate it to people with whom one is not on friendly terms. We study the behavior of rational agents in such a situation, and we characterize the existence and computability of stable information-sharing networks, in which agents do not have an incentive to change the partners with whom they share information. We analyze the implications of these stable networks for social welfare, and the resulting fragmentation of the social network

    Efficient Equilibria in Polymatrix Coordination Games

    Get PDF
    We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study α\alpha-approximate kk-equilibria of these games, i.e., outcomes where no group of at most kk players can deviate such that each member increases his payoff by at least a factor α\alpha. We prove that for α2\alpha \ge 2 these games have the finite coalitional improvement property (and thus α\alpha-approximate kk-equilibria exist), while for α<2\alpha < 2 this property does not hold. Further, we derive an almost tight bound of 2α(n1)/(k1)2\alpha(n-1)/(k-1) on the price of anarchy, where nn is the number of players; in particular, it scales from unbounded for pure Nash equilibria (k=1)k = 1) to 2α2\alpha for strong equilibria (k=nk = n). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of kk players the price of anarchy can be reduced to n/kn/k (and this bound is tight)

    Approximate Equilibrium and Incentivizing Social Coordination

    Full text link
    We study techniques to incentivize self-interested agents to form socially desirable solutions in scenarios where they benefit from mutual coordination. Towards this end, we consider coordination games where agents have different intrinsic preferences but they stand to gain if others choose the same strategy as them. For non-trivial versions of our game, stable solutions like Nash Equilibrium may not exist, or may be socially inefficient even when they do exist. This motivates us to focus on designing efficient algorithms to compute (almost) stable solutions like Approximate Equilibrium that can be realized if agents are provided some additional incentives. Our results apply in many settings like adoption of new products, project selection, and group formation, where a central authority can direct agents towards a strategy but agents may defect if they have better alternatives. We show that for any given instance, we can either compute a high quality approximate equilibrium or a near-optimal solution that can be stabilized by providing small payments to some players. We then generalize our model to encompass situations where player relationships may exhibit complementarities and present an algorithm to compute an Approximate Equilibrium whose stability factor is linear in the degree of complementarity. Our results imply that a little influence is necessary in order to ensure that selfish players coordinate and form socially efficient solutions.Comment: A preliminary version of this work will appear in AAAI-14: Twenty-Eighth Conference on Artificial Intelligenc

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived

    The Present and Future of Game Theory

    Get PDF
    A broad nontechnical coverage of many of the developments in game theory since the 1950s is given together with some comments on important open problems and where some of the developments may take place. The nearly 90 references given serve only as a minimal guide to the many thousands of books and articles that have been written. The purpose here is to present a broad brush picture of the many areas of study and application that have come into being. The use of deep techniques flourishes best when it stays in touch with application. There is a vital symbiotic relationship between good theory and practice. The breakneck speed of development of game theory calls for an appreciation of both the many realities of conflict, coordination and cooperation and the abstract investigation of all of them.Game theory, Application and theory, Social sciences, Law, Experimental gaming, conflict, Coordination and cooperation
    corecore