5 research outputs found

    Real-Time Tracking of Individual Droplets in Multiphase Microfluidics

    Get PDF
    Multiphase microfluidics enables the high-throughput manipulation of droplets for multitude of applications, from the confined fabrication of nano- and micro-objects to the parallelization of chemical reactions of biomedical or biological interest. While the standard methods to follow droplets on a chip are represented by a visual observation through either optical or fluorescence microscopy, the conjunction of microfluidic platforms with miniaturized transduction mechanisms opens new ways towards the real-time and individual tracking of each independent reactor. Here we provide an overview of the most recent droplet sensing techniques, with a special focus on those based on electrical signals for an optics-less analysis

    Encoding Microreactors with Droplet Chains in Microfluidics

    Full text link
    © 2017 American Chemical Society. Droplet-based high throughput biomolecular screening and combinatorial synthesis entail a viable indexing strategy to be developed for the identification of each microreactor. Here, we propose a novel indexing scheme based on the generation of droplet sequences on demand to form unique encoding droplet chains in fluidic networks. These codes are represented by multiunit and multilevel droplets packages, with each code unit possessing several distinct signal levels, potentially allowing large encoding capacity. For proof of concept, we use magnetic nanoparticles as the encoding material and a giant magnetoresistance (GMR) sensor-based active sorting system supplemented with an optical detector to generate and decode the sequence of one exemplar sample droplet reactor and a 4-unit quaternary magnetic code. The indexing capacity offered by 4-unit multilevel codes with this indexing strategy is estimated to exceed 104, which holds great promise for large-scale droplet-based screening and synthesis

    Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics

    Get PDF
    We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays
    corecore