31 research outputs found

    Strong deviations from randomness in m-sequences based on trinomials

    Get PDF
    The fixed vector of any m-sequence based on a trinomial is explicitly obtained. Local nonrandomness around the fixed vector is analyzed through model-construction and experiments. We conclude that the initial vector near the fixed vector should be avoided

    Hurst's Rescaled Range Statistical Analysis for Pseudorandom Number Generators used in Physical Simulations

    Full text link
    The rescaled range statistical analysis (R/S) is proposed as a new method to detect correlations in pseudorandom number generators used in Monte Carlo simulations. In an extensive test it is demonstrated that the RS analysis provides a very sensitive method to reveal hidden long run and short run correlations. Several widely used and also some recently proposed pseudorandom number generators are subjected to this test. In many generators correlations are detected and quantified.Comment: 12 pages, 12 figures, 6 tables. Replaces previous version to correct citation [19

    Improved long-period generators based on linear recurrences modulo 2

    Get PDF
    Fast uniform random number generators with extremely long periods have been defined and implemented based on linear recurrences modulo 2. The twisted GFSR and the Mersenne twister are famous recent examples. Besides the period length, the statistical quality of these generators is usually assessed via their equidistribution properties. The huge-period generators proposed so far are not quite optimal in this respect. In this article, we propose new generators of that form with better equidistribution and "bit-mixing" properties for equivalent period length and speed. The state of our new generators evolves in a more chaotic way than for the Mersenne twister. We illustrate how this can reduce the impact of persistent dependencies among successive output values, which can be observed in certain parts of the period of gigantic generators such as the Mersenne twister

    Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation

    Full text link
    We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.Comment: 18 pages, 3 figures, 9 table
    corecore