8,431 research outputs found

    Best Approximation from the Kuhn-Tucker Set of Composite Monotone Inclusions

    Full text link
    Kuhn-Tucker points play a fundamental role in the analysis and the numerical solution of monotone inclusion problems, providing in particular both primal and dual solutions. We propose a class of strongly convergent algorithms for constructing the best approximation to a reference point from the set of Kuhn-Tucker points of a general Hilbertian composite monotone inclusion problem. Applications to systems of coupled monotone inclusions are presented. Our framework does not impose additional assumptions on the operators present in the formulation, and it does not require knowledge of the norm of the linear operators involved in the compositions or the inversion of linear operators

    A Besov algebra calculus for generators of operator semigroups and related norm-estimates

    Full text link
    We construct a new bounded functional calculus for the generators of bounded semigroups on Hilbert spaces and generators of bounded holomorphic semigroups on Banach spaces. The calculus is a natural (and strict) extension of the classical Hille-Phillips functional calculus, and it is compatible with the other well-known functional calculi. It satisfies the standard properties of functional calculi, provides a unified and direct approach to a number of norm-estimates in the literature, and allows improvements of some of them.Comment: This is the authors' accepted version of a paper which will be published in Mathematische Annale

    Local Analysis of Inverse Problems: H\"{o}lder Stability and Iterative Reconstruction

    Full text link
    We consider a class of inverse problems defined by a nonlinear map from parameter or model functions to the data. We assume that solutions exist. The space of model functions is a Banach space which is smooth and uniformly convex; however, the data space can be an arbitrary Banach space. We study sequences of parameter functions generated by a nonlinear Landweber iteration and conditions under which these strongly converge, locally, to the solutions within an appropriate distance. We express the conditions for convergence in terms of H\"{o}lder stability of the inverse maps, which ties naturally to the analysis of inverse problems
    corecore