11,246 research outputs found

    Circuits, Perfect Matchings and Paths in Graphs

    Get PDF
    We primarily consider the problem of finding a family of circuits to cover a bidgeless graph (mainly on cubic graph) with respect to a given weight function defined on the edge set. The first chapter of this thesis is going to cover all basic concepts and notations will be used and a survey of this topic.;In Chapter two, we shall pay our attention to the Strong Circuit Double Cover Conjecture (SCDC Conjecture). This conjecture was verified for some graphs with special structure. As the complement of two factor in cubic graph, the Berge-Fulkersen Conjecture was introduced right after SCDC Conjecture. In Chapter three, we shall present a series of conjectures related to perfect matching covering and point out their relationship.;In last chapter, we shall introduce the saturation number, in contrast to extremal number (or known as Turan Number), and describe the edge spectrum of saturation number for small paths, where the spectrum was consisted of all possible integers between saturation number and Turan number

    A note on 5-cycle double covers

    Full text link
    The strong cycle double cover conjecture states that for every circuit CC of a bridgeless cubic graph GG, there is a cycle double cover of GG which contains CC. We conjecture that there is even a 5-cycle double cover SS of GG which contains CC, i.e. CC is a subgraph of one of the five 2-regular subgraphs of SS. We prove a necessary and sufficient condition for a 2-regular subgraph to be contained in a 5-cycle double cover of GG

    Generation and Properties of Snarks

    Full text link
    For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for \emph{snarks}, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n≤36n\leq 36 vertices. Previously lists up to n=28n=28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.Comment: Submitted for publication V2: various corrections V3: Figures updated and typos corrected. This version differs from the published one in that the Arxiv-version has data about the automorphisms of snarks; Journal of Combinatorial Theory. Series B. 201

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S≥5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S≥5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S≥5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S≥5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    Perfect Matching and Circuit Cover of Graphs

    Get PDF
    The research of my dissertation is motivated by the Circuit Double Cover Conjecture due to Szekeres and independently Seymour, that every bridgeless graph G has a family of circuits which covers every edge of G twice. By Fleischner\u27s Splitting Lemma, it suffices to verify the circuit double cover conjecture for bridgeless cubic graphs.;It is well known that every edge-3-colorable cubic graph has a circuit double cover. The structures of edge-3-colorable cubic graphs have strong connections with the circuit double cover conjecture. In chapter two, we consider the structure properties of a special class of edge-3-colorable cubic graphs, which has an edge contained by a unique perfect matching. In chapter three, we prove that if a cubic graph G containing a subdivision of a special class of edge-3-colorable cubic graphs, semi-Kotzig graphs, then G has a circuit double cover.;Circuit extension is an approach posted by Seymour to attack the circuit double cover conjecture. But Fleischer and Kochol found counterexamples to this approach. In chapter four, we post a modified approach, called circuit extension sequence. If a cubic graph G has a circuit extension sequence, then G has a circuit double cover. We verify that all Fleischner\u27s examples and Kochol\u27s examples have a circuit extension sequence, and hence not counterexamples to our approach. Further, we prove that a circuit C of a bridgeless cubic G is extendable if the attachments of all odd Tutte-bridges appear on C consequently.;In the last chapter, we consider the properties of minimum counterexamples to the strong circuit double cover. Applying these properties, we show that if a cubic graph G has a long circuit with at least | V(G)| - 7 vertices, then G has a circuit double cover
    • …
    corecore