75 research outputs found

    Strong Authenticity with Leakage under Weak and Falsifiable Physical Assumptions

    Get PDF
    Authenticity can be compromised by information leaked via side-channels (e.g., power consumption). Examples of attacks include direct key recoveries and attacks against the tag verification which may lead to forgeries. At FSE 2018, Berti et al. described two authenticated encryption schemes which provide authenticity assuming a “leak-free implementation” of a Tweakable Block Cipher (TBC). Precisely, security is guaranteed even if all the intermediate computations of the target implementation are leaked in full but the TBC long-term key. Yet, while a leak-free implementation reasonably models strongly protected implementations of a TBC, it remains an idealized physical assumption that may be too demanding in many cases, in particular, if hardware engineers mitigate the leakage to a good extent but (due to performance constraints) do not reach leak-freeness. In this paper, we get rid of this important limitation by introducing the notion of “Strong Unpredictability with Leakage” for BC\u27s and TBC\u27s. It captures the hardness for an adversary to provide a fresh and valid input/output pair for a (T)BC, even having oracle access to the (T)BC, its inverse and their leakages. This definition is game-based and may be verified/falsified by laboratories. Based on it, we then provide two Message Authentication Codes (MAC) which are secure if the (T)BC on which they rely are implemented in a way that maintains a sufficient unpredictability. Thus, we improve the theoretical foundations of leakage-resilient MAC and extend them towards engineering constraints that are easier to achieve in practice

    Cryptographic techniques for hardware security

    Get PDF
    Traditionally, cryptographic algorithms are designed under the so-called black-box model, which considers adversaries that receive black-box access to the hardware implementation. Although a "black-box" treatment covers a wide range of attacks, it fails to capture reality adequately, as real-world adversaries can exploit physical properties of the implementation, mounting attacks that enable unexpected, non-black-box access, to the components of the cryptographic system. This type of attacks is widely known as physical attacks, and has proven to be a significant threat to the real-world security of cryptographic systems. The present dissertation is (partially) dealing with the problem of protecting cryptographic memory against physical attacks, via the use of non-malleable codes, which is a notion introduced in a preceding work, aiming to provide privacy of the encoded data, in the presence of adversarial faults. In the present thesis we improve the current state-of-the-art on non-malleable codes and we provide practical solutions for protecting real-world cryptographic implementations against physical attacks. Our study is primarily focusing on the following adversarial models: (i) the extensively studied split-state model, which assumes that private memory splits into two parts, and the adversary tampers with each part, independently, and (ii) the model of partial functions, which is introduced by the current thesis, and models adversaries that access arbitrary subsets of codeword locations, with bounded cardinality. Our study is comprehensive, covering one-time and continuous, attacks, while for the case of partial functions, we manage to achieve a stronger notion of security, that we call non-malleability with manipulation detection, that in addition to privacy, it also guarantees integrity of the private data. It should be noted that, our techniques are also useful for the problem of establishing, private, keyless communication, over adversarial communication channels. Besides physical attacks, another important concern related to cryptographic hardware security, is that the hardware fabrication process is assumed to be trusted. In reality though, when aiming to minimize the production costs, or whenever access to leading-edge manufacturing facilities is required, the fabrication process requires the involvement of several, potentially malicious, facilities. Consequently, cryptographic hardware is susceptible to the so-called hardware Trojans, which are hardware components that are maliciously implanted to the original circuitry, having as a purpose to alter the device's functionality, while remaining undetected. Part of the present dissertation, deals with the problem of protecting cryptographic hardware against Trojan injection attacks, by (i) proposing a formal model for assessing the security of cryptographic hardware, whose production has been partially outsourced to a set of untrusted, and possibly malicious, manufacturers, and (ii) by proposing a compiler that transforms any cryptographic circuit, into another, that can be securely outsourced

    A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs

    Get PDF
    Incompressibility is one of the most fundamental security goals in white-box cryptography. Given recent advances in the design of efficient and incompressible block ciphers such as SPACE, SPNbox and WhiteBlock, we demonstrate the feasibility of reducing incompressible AEAD modes to incompressible block ciphers. We first observe that several existing AEAD modes of operation, including CCM, GCM(-SIV), and OCB, would be all insecure against white-box adversaries even when used with an incompressble block cipher. This motivates us to revisit and formalize incompressibility-based security definitions for AEAD schemes and for block ciphers, so that we become able to design modes and reduce their security to that of the underlying ciphers. Our new security notion for AEAD, which we name whPRI, is an extension of the pseudo-random injection security in the black-box setting. Similar security notions are also defined for other cryptosystems such as privacy-only encryption schemes. We emphasize that whPRI ensures quite strong authenticity against white-box adversaries: existential unforgeability beyond leakage. This contrasts sharply with previous notions which have ensured either no authenticity or only universal unforgeability. For the underlying ciphers we introduce a new notion of whPRP, which extends that of PRP in the black-box setting. Interestingly, our incompressibility reductions follow from a variant of public indifferentiability. In particular, we show that a practical whPRI-secure AEAD mode can be built from a whPRP-secure block cipher: We present a SIV-like composition of the sponge construction (utilizing a block cipher as its underlying primitive) with the counter mode and prove that such a construction is (in the variant sense) public indifferentiable from a random injection. To instantiate such an AEAD scheme, we propose a 256-bit variant of SPACE, based on our conjecture that SPACE should be a whPRP-secure cipher

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Strong Authenticity with Leakage under Weak and Falsifiable Physical Assumptions

    No full text
    Authenticity can be compromised by information leaked via side-channels (e.g., power consumption). Examples of attacks include direct key recoveries and attacks against the tag verification which may lead to forgeries. At FSE 2018, Berti et al. described two authenticated encryption schemes which provide authenticity assuming a leak-free implementation of a Tweakable Block Cipher (TBC). Precisely, security is guaranteed even if all the intermediate computations of the target implementation are leaked in full but the TBC long-term key. Yet, while a leak-free implementation reasonably models strongly protected implementations of a TBC, it remains an idealized physical assumption that may be too demanding in many cases, in particular if hardware engineers mitigate the leakage to a good extent but (due to performance constraints) do not reach leak-freeness. In this paper, we get rid of this important limitation by introducing the notion of Strong Unpredictability with Leakage for BC’s and TBC’s. It captures the hardness for an adversary to provide a fresh and valid input/output pair for a (T)BC, even having oracle access to the (T)BC, its inverse and their leakages. This definition is game-based and may be verified/falsified by laboratories. Based on it, we then provide two Message Authentication Codes (MAC) which are secure if the (T)BC on which they rely are implemented in a way that maintains a sufficient unpredictability. Thus, we improve the theoretical foundations of leakageresilient MAC and extend them towards engineering constraints that are easier to achieve in practice

    Cryptographic protocol design

    Get PDF
    In this work, we investigate the security of interactive computations. The main emphasis is on the mathematical methodology that is needed to formalise and analyse various security properties. Differently from many classical treatments of secure multi-party computations, we always quantify security in exact terms. Although working with concrete time bounds and success probabilities is technically more demanding, it also has several advantages. As all security guarantees are quantitative, we can always compare different protocol designs. Moreover, these security guarantees also have a clear economical interpretation and it is possible to compare cryptographic and non-cryptographic solutions. The latter is extremely important in practice, since cryptographic techniques are just one possibility to achieve practical security. Also, working with exact bounds makes reasoning errors more apparent, as security proofs are less abstract and it is easier to locate false claims. The choice of topics covered in this thesis was guided by two principles. Firstly, we wanted to give a coherent overview of the secure multi-party computation that is based on exact quantification of security guarantees. Secondly, we focused on topics that emerged from the author's own research. In that sense, the thesis generalises many methodological discoveries made by the author. As surprising as it may seem, security definitions and proofs mostly utilise principles of hypothesis testing and analysis of stochastic algorithms. Thus, we start our treatment with hypothesis testing and its generalisations. In particular, we show how to quantify various security properties, using security games as tools. Next, we review basic proof techniques and explain how to structure complex proofs so they become easily verifiable. In a nutshell, we describe how to represent a proof as a game tree, where each edge corresponds to an elementary proof step. As a result, one can first verify the overall structure of a proof by looking at the syntactic changes in the game tree and only then verify all individual proof steps corresponding to the edges. The remaining part of the thesis is dedicated to various aspects of protocol design. Firstly, we discuss how to formalise various security goals, such as input-privacy, output-consistency and complete security, and how to choose a security goal that is appropriate for a specific setting. Secondly, we also explore alternatives to exact security. More precisely, we analyse connections between exact and asymptotic security models and rigorously formalise a notion of subjective security. Thirdly, we study in which conditions protocols preserve their security guarantees and how to safely combine several protocols. Although composability results are common knowledge, we look at them from a slightly different angle. Namely, it is irrational to design universally composable protocols at any cost; instead, we should design computationally efficient protocols with minimal usage restrictions. Thus, we propose a three-stage design procedure that leads to modular security proofs and minimises usage restrictions

    Declarative design and enforcement for secure cloud applications

    Get PDF
    The growing demands of users and industry have led to an increase in both size and complexity of deployed software in recent years. This tendency mainly stems from a growing number of interconnected mobile devices and from the huge amounts of data that is collected every day by a growing number of sensors and interfaces. Such increase in complexity imposes various challenges -- not only in terms of software correctness, but also with respect to security. This thesis addresses three complementary approaches to cope with the challenges: (i) appropriate high-level abstractions and verifiable translation methods to executable applications in order to guarantee flawless implementations, (ii) strong cryptographic mechanisms in order to realize the desired security goals, and (iii) convenient methods in order to incentivize the correct usage of existing techniques and tools. In more detail, the thesis presents two frameworks for the declarative specification of functionality and security, together with advanced compilers for the verifiable translation to executable applications. Moreover, the thesis presents two cryptographic primitives for the enforcement of cloud-based security properties: homomorphic message authentication codes ensure the correctness of evaluating functions over data outsourced to unreliable cloud servers; and efficiently verifiable non-interactive zero-knowledge proofs convince verifiers of computation results without the verifiers having access to the computation input.Die wachsenden Anforderungen von Seiten der Industrie und der Endbenutzer verlangen nach immer komplexeren Softwaresystemen -- grĂ¶ĂŸtenteils begrĂŒndet durch die stetig wachsende Zahl mobiler GerĂ€te und die damit wachsende Zahl an Sensoren und erfassten Daten. Mit wachsender Software-KomplexitĂ€t steigen auch die Herausforderungen an Korrektheit und Sicherheit. Die vorliegende Arbeit widmet sich diesen Herausforderungen in Form dreier komplementĂ€rer AnsĂ€tze: (i) geeignete Abstraktionen und verifizierbare Übersetzungsmethoden zu ausfĂŒhrbaren Anwendungen, die fehlerfreie Implementierungen garantieren, (ii) starke kryptographische Mechanismen, um die spezifizierten Sicherheitsanforderungen effizient und korrekt umzusetzen, und (iii) zweckmĂ€ĂŸige Methoden, die eine korrekte Benutzung existierender Werkzeuge und Techniken begĂŒnstigen. Diese Arbeit stellt zwei neuartige AblĂ€ufe vor, die verifizierbare Übersetzungen von deklarativen Spezifikationen funktionaler und sicherheitsrelevanter Ziele zu ausfĂŒhrbaren Cloud-Anwendungen ermöglichen. DarĂŒber hinaus prĂ€sentiert diese Arbeit zwei kryptographische Primitive fĂŒr sichere Berechnungen in unzuverlĂ€ssigen Cloud-Umgebungen. Obwohl die Eingabedaten der Berechnungen zuvor in die Cloud ausgelagert wurden und zur Verifikation der Berechnungen nicht mehr zur VerfĂŒgung stehen, ist es möglich, die Korrektheit der Ergebnisse in effizienter Weise zu ĂŒberprĂŒfen

    Corporate Governance and the Shareholder: Asymmetry, Confidence, and Decision-Making

    Get PDF
    In the decade following the ten-plus percent stockmarket collapse of 2000, regulators enacted a myriad of regulations in response to increasing angst experienced by U.S. capital market retail investors. Systemic asymmetric disclosures have fractured investor confidence prompting many commentators to characterize the relationship between Wall Street and the investment community on main street as dire. Though copious works exist on the phenomenon of corporate behaviors, especially matters of shareholder welfare, weak boards, pervious governance mechanisms, and managerial excess, current literature has revealed a dearth in corporate governance praxis specific to the question and effects of asymmetric disseminations and its principal impact on the retail/noninstitutional accredited investor\u27s (NIAI) confidence and decision-making propensities. This phenomenological study is purposed to bridging the gap between the effects of governance disclosure and the confidence and decision-making inclinations of NIAIs. Conceptual frameworks of Akerlof\u27s information theory and Verstegen Ryan and Buchholtz\u27s trust/risk decision making model undergirded the study. A nonrandom purposive sampling method was used to select 21 NIAI informants. Analysis of interview data revealed epistemological patterns/themes confirming the deleterious effects of asymmetrical disseminations on participants\u27 investment decision-making and trust behaviors. Findings may help academicians, investors, policy makers, and practitioners better comprehend the phenomenon and possibly contribute to operating efficiencies in the capital markets. Proaction and greater assertiveness in the investor/activist community may provide an impetus for continued regulatory reforms, improved transparency, and a revitalization of public trust as positive social change outcomes
    • 

    corecore