173 research outputs found

    Advances on mechanical designs for assistive ankle-foot orthoses

    Get PDF
    Assistive ankle-foot orthoses (AFOs) are powerful solutions to assist or rehabilitate gait on humans. Existing assistive AFO technologies include passive, quasi-passive, and active principles to provide assistance to the users, and their mechanical configuration and control depend on the eventual support they aim for within the gait pattern. In this research we analyze the state-of-the-art of assistive AFOs and classify the different approaches into clusters, describing their basis and working principles. Additionally, we reviewed the purpose and experimental validation of the devices, providing the reader with a better view of the technology readiness level. Finally, the reviewed designs, limitations, and future steps in the field are summarized and discussed.Comment: Figures appear at the end. Article submitted to Frontiers in Bioengineering and Biotechnology (currently under review

    Outcome measures and motion capture systems for assessing lower limb orthosis-based interventions after stroke: a systematic review

    Get PDF
    Purpose: To review and categorize, according to the International Classification of Functioning, the outcome measures, and motion capture systems for studying the evidence-based practice of orthotic-based interventions in post-stroke gait rehabilitation. Methods: An electronic literature search was conducted up to February 2018 in Web of Science, Scopus, MEDLINE and Physiotherapy Evidence Database. Randomized trials measuring activity, impairment or participation outcome measures for studying the evidence-based practice of orthoses in gait rehabilitation after an acute or chronic stroke were identified. The studies were assessed through the Cochrane risk-of-bias tool by three authors. Information about stroke’s stage, assessment protocol (goal, timing and motion capture system), orthosis configuration and outcome measures were extracted. Results: Eighteen randomized trials, including 387 post-stroke adults, mostly in the chronic stage, were selected. They assessed 39 outcomes, mainly activity outcome measures such as spatiotemporal (72.2%), kinematic (44.4%) and functional (33.3%) outcomes. Gait speed was the primary outcome in most studies. Participation (22.2%) and impairment (16.7%) outcome measures were less explored. Mostly, non-portable motion capture systems were employed opposing the freely-use of the wearable orthosis. The detection bias risk and the shortage of baseline and follow-up outcome measures affected the studies’ assessment quality. Conclusions: Studies showed heterogeneity in selecting outcomes and timings for assessment. There is evidence for assessing the evidence of orthosis-based gait rehabilitation after stroke through activity outcome measures, primarily the gait speed, recorded by non-wearable motion capture systems. A unified methodology considering wearable sensors for tracking baseline and follow-up measures is needed.Implications for rehabilitation There is evidence on use activity outcome measures to assess the meaningful evidence-based practice of orthosis-based gait rehabilitatio- (undefined

    Towards a human-in-the-loop control for a smart orthotic system

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Stroke is the main cause of paralysis. This pathology has provoked a considerable increase of persons with motor impairments. With a therapy focused on each clinical case, the total or partial recovery can be achieved. Powered orthoses have been developed to promote an effective recover, based on repetitive gait training and user’s active participation. Many control approaches have been developed to control these devices, but none of them promotes an user-oriented strategy focused to the user’s needs. In an attempt of solving this issue, a new approach named Human-in-the-loop is emerging. This strategy allows the adaptation of some assistive parameters based on the user’s energetic cost, promoting a therapy tailored to each end-user needs. However, to estimate the energy expenditure, the use of non-ergonomic sensors, not suitable for clinical context, is required. Thus, it is necessary to find new ways of estimating energy expenditure using wearable and comfortable sensors. In this dissertation, the first steps to introduce the Human-in-the-loop strategy into a powered orthosis are presented. For this purpose, two strategies were developed: a strategy that allows the angular trajectory adaptation in real-time and other that promotes a stiffness adaptation all over the gait cycle. Both strategies were validated with healthy subjects. In the first strategy, the orthosis was able to modify its assistance in a fraction of microseconds, and the end-users were able to follow her with a median error below 10%. Regarding the second strategy, the results show that the orthosis allowed an effective change in the systems’ interaction stiffness, promoting an active participation of each user during its assistance. The energetic impact of using the robotic assistive device is also presented. As it promotes an energy expenditure augmentation in more than 30% in comparison to walk without the device, the necessity of implementing the Human-in-the-loop strategy was highlighted. In an attempt of finding an ergonomic technique to estimate the energetic cost, the use of machine learning algorithms was tested. The results, obtained with a MLP and a LSTM, prove that it is possible to estimate the energy expenditure with a mean error close to 11%. Future work consists in the implementation of the model in real-time and the collection of more data with the aforementioned control approaches, in a way of constructing a more robust model.O AVC é uma das maiores causas de paralisia. Esta patologia, cada vez mais com maior incidência nos jovens, tem provocado um aumento considerável de pessoas com problemas de mobilidade. Com uma terapia focada a cada caso clínico, a recuperação total ou parcial pode ser conseguida. As ortóteses ativas têm vindo a ser desenvolvidas com o propósito de promover uma recuperação eficaz, baseada em treinos repetitivos e numa participação ativa dos utilizadores. Várias abordagens de controlo têm vindo a ser desenvolvidas para controlar estes dispositivos, mas nenhuma delas promove uma estratégia orientada às necessidades do utilizador. Na tentativa de solucionar este problema, uma nova abordagem, designada por Human-in-the-loop está a emergir. Baseada no custo energético, esta estratégia permite adaptar parâmetros da assistência, promovendo uma terapia focada e direcionada a cada utilizador. No entanto, para estimar o custo energético, recorre-se ao uso de sensores que não são adequados para contexto clínico. Assim, torna-se necessário estudar novas formas de estimar o custo energético. Nesta dissertação são apresentados os primeiros passos para introduzir o controlo Human-in-the-loop numa ortótese ativa. Para isso, duas estratégias foram apresentadas: uma estratégia que permite adaptar a trajetória angular da ortótese, em tempo real, e outra que promove a adaptação da complacência do sistema ao longo do ciclo da marcha. Ambas foram validadas com sujeitos saudáveis. Relativamente à primeira abordagem, a ortótese foi capaz de modificar a sua assistência em microssegundos, e os utilizadores foram capazes de a seguir com um erro mediano inferior a 10%. No que diz respeito à segunda abordagem, os resultados mostram que a ortótese promoveu uma alteração eficaz da complacência de interação, promovendo uma participação ativa do utilizador durante a sua assistência. O impacto energético do uso do sistema robótico é, também, apresentado. Promovendo um aumento do custo energético em mais de 30%, a necessidade da estratégia Human-in-the-loop foi realçada. Na tentativa de encontrar uma técnica para estimar o custo energético, recorreu-se ao uso de machine learning. Os resultados, obtidos com uma MLP e uma LSTM, provam que é possível estimar o custo energético com um erro médio próximo dos 11%. Trabalho futuro passa pela implementação do modelo em tempo real e a recolha de mais dados com as abordagens de controlo apresentadas, de forma a construir um modelo mais robusto

    A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study

    Get PDF
    Background: In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user’s paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Methods: Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. Results: The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p \u3c .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). Conclusions: This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke

    The effect of stroke on foot kinematics and the functional consequences

    Get PDF
    Background Although approximately one-third of stroke survivors suffer abnormal foot posture and this can influence mobility, there is very little objective information regarding the foot and ankle after stroke. Objective As part of a programme of research examining foot and ankle biomechanics after stroke, we investigated multi-planar kinematics and the relationship with function. Methods In a single assessment session, static foot posture (Foot Posture Index); mobility limitations (Walking Handicap Scale) and multi-segment foot and ankle kinematics during stance phase of walking were measured in 20 mobile chronic stroke survivors and 15 sex and age-matched healthy volunteers. Results Compared to the healthy volunteers, the stroke survivors demonstrated consistently reduced range of motion across most segments and planes, increased pronation and reduced supination, disruption of the rocker and the timing of joint motion. Changes in pronation/supination were associated with limited walking ability. Conclusions This study provides evidence of structural and movement deficiencies in the intrinsic foot segments affected by stroke. These would not have been detectable using a single segment foot model. Data do not support common clinical practices that focus on correction of sagittal ankle deformity and assumed excessive foot supination. Some of these abnormalities were associated with limitation in functional ability. Biomechanical abnormalities of foot and ankle are modifiable and there is potential for clinical studies and future developments of interventions to help prevent or treat these abnormalities which may improve functional ability post stroke

    A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot

    Get PDF
    This paper involves the use of a compliant ankle rehabilitation robot (CARR) for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo Fluidic muscles (FFMs) that mimic skeletal muscles actuating three rotational degrees of freedom (DOFs). A trajectory tracking controller was developed in joint task space to track the predefined trajectory of the end effector. This controller was achieved by controlling individual FFM length based on inverse kinematics. Three patients with drop foot participated in a preliminary study to evaluate the potential of the CARR for clinical applications. Ankle stretching exercises along ankle dorsiflexion and plantarflexion (DP) were delivered for treating drop foot. All patients gave positive feedback in using this ankle robot for the treatment of drop foot, although some limitations exist. The proposed controller showed satisfactory accuracy in trajectory tracking, with all root mean square deviation (RMSD) values no greater than 0.0335 rad and normalized root mean square deviation (NRMSD) values less than 6.7%. These preliminary findings support the potentials of the CARR for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects

    Design of a wearable active ankle-foot orthosis for both sides

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)Portugal is the west European country with the highest rate of stroke-related mortality, being that, of those who suffer cerebrovascular accidents, 40% feature an impairment which can manifest itself through motor sequelae, namely drop foot. An ankle-foot orthosis is often recommended to passively accommodate these motor problems; however, active/powered exoskeletons are also a suitable solution for post-stroke patients. Due to the high complexity of the human ankle joint, one of the problems regarding these active devices is the misalignment occurring between the rehabilitation device and the human joint, which is a cause of parasitic forces, discomfort, and pain. The present master dissertation proposes the development of an adjustable wearable active ankle-foot orthosis that is able to tackle this misalignment issue concerning commercially available lower limb orthotic devices. This work is integrated on the SmartOs – Smart, Stand-alone Active Orthotic System – project that proposes an innovative robotic technology (a wearable mobile lab) oriented to gait rehabilitation. The conceptual design of a standard version of the SmartOs wearable active orthosis was initiated with the analysis of another ankle-foot orthosis – Exo-H2 (Technaid) – from which the necessary design changes were implemented, aiming at the improvement of the established device. In order to achieve a conceptual solution, both the practical knowledge of the Orthos XXI design team and several design methods were used to ensure the accomplishment of the defined requirements. The detailed design process of the standard SmartOs wearable active orthosis prototype is disclosed. With the purpose of validating the design, the critical components were simulated with the resources available in SolidWorks®, and the necessary CAD model’s adaptations were implemented to guarantee a reliable and safe design. The presented design is currently set for further production in Orthos XXI, followed by the mandatory mechanical tests.Portugal é o país da Europa ocidental com maior taxa de mortalidade por acidente vascular cerebral (AVC), sendo que, dos que sofrem acidentes vasculares cerebrais, 40% apresentam uma deficiência que pode manifestar-se por sequelas motoras, nomeadamente o pé pendente. Uma ortótese do tornozelo é recomendada frequentemente para acomodar passivamente esses problemas motores; no entanto, exoesqueletos ativos são também uma solução adequada para pacientes pós-AVC. Devido à alta complexidade da articulação do tornozelo humano, um dos problemas associados a esses dispositivos ativos é o desalinhamento que ocorre entre o dispositivo de reabilitação e a articulação humana, que é uma causa de forças parasitas, desconforto e dor. A presente dissertação de mestrado propõe o desenvolvimento de uma ortótese ativa do tornozelo ajustável e vestível, que seja capaz de resolver esse problema de desalinhamento relativo aos dispositivos ortóticos de membros inferiores disponíveis comercialmente. Este trabalho está integrado no projeto SmartOs - Smart, Stand-alone Active Orthotic System - projeto que propõe uma tecnologia robótica inovadora (wearable mobile lab) direcionada para a reabilitação da marcha. O projeto conceptual de uma versão padrão da ortótese ativa vestível do projeto SmartOs foi iniciado com a análise de outra ortótese do tornozelo – Exo-H2 (Technaid) - a partir da qual foram implementadas as alterações de projeto necessárias, visando o aprimoramento do dispositivo estabelecido. Para se chegar a uma solução conceptual, tanto o conhecimento prático da equipa de projeto da Orthos XXI como os diversos métodos de projeto foram utilizados para garantir o cumprimento dos requisitos definidos. O processo do desenho detalhado da versão padrão da ortótese ativa SmartOs será também divulgado. Com o objetivo de validar o projeto, os componentes críticos foram simulados com os recursos disponíveis no SolidWorks® e as adaptações necessárias do modelo CAD foram implementadas para garantir um projeto fidedigno e seguro. O projeto apresentado está atualmente em preparação para produção na empresa Orthos XXI, depois do qual se seguem os ensaios mecânicos obrigatórios

    THE IMPACT OF ASSISTIVE DEVICES ON GAIT BIOMECHANICS AND MUSCLE ACTIVITY IN STROKE SURVIVORS: (a) The Impact of Regulated AFO Plantarflexion and Dorsiflexion Resistance on Biomechanics and Muscle Activity of Individuals Post-stroke. (b) How Treadmill Handrail-use Impacts the Paretic Side Margin of Stability in Individuals’ Post-stroke

    Get PDF
    The purpose of this thesis was to investigate how different assistive devices impact the gait characteristics of stroke survivors. In two different sections, we investigated how an ankle foot-orthosis (AFO) impacts the gait and muscle activity of stroke survivors, and how the use of treadmill handrails impacts the stability margins of stroke survivors while walking on the treadmill. First, we used an articulated AFO device fabricated with an individual-specific design using a 3D scanner and a 3D printer to personalize the AFO foot plate and calf section, which we assembled with a triple action joint for each participant. The joints enabled independent tuning and testing of the impact of plantarflexion and dorsiflexion resistances on the participants and we tested a low, medium, and high resistance for each condition. Our findings showed that the AFO device systematically changed the muscle activity and the kinetics and kinematic gait characteristics of the participants. We noted significant phase changes for the plantarflexion resistances on the peak tibialis anterior and rectus femoris muscle activity in swing, the peak ankle dorsiflexion moment, knee flexion angle at the initial stance, and the ankle angle at initial stance. The dorsiflexion resistance significantly impacted the peak dorsiflexion angle and the peak positive ankle power of the participants. In the second study, we used a visual biofeedback system to modulate the treadmill conditions of No hold, Light touch, and self-selected handrail use to examine how three treadmill handrail-use situations affect the stability margins of stroke survivors. When holding the handrails with a self-selected hold while walking on the treadmill, the participants\u27 anteroposterior and mediolateral margins of stability for their paretic leg increased as compared to a light touch or no handrail use. The self-selected handrail use also impacted the participants\u27 non-paretic leg, increasing its anteroposterior margin of stability and decreasing its mediolateral margin of stability. These findings from both studies demonstrate that assistive devices can help improve the biomechanics and walking characteristics of stroke survivors, though additional research will provide a clearer guide on how to prevent unintended adaptations and potential complications from prolonged use

    A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.

    Get PDF
    Background: Hemiparetic gait is characterized by strong asymmetries that can severely affect the quality of life of stroke survivors. This type of asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the nonparetic limb. In this study, we aimed to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and nonparetic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active knee–ankle–foot orthosis designed and developed to naturally assist the paretic limbs of hemiparetic patients during gait. Methods: REFLEX uses an adaptive frequency oscillator to estimate the continuous gait phase of the nonparetic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) replicating the movement of the nonparetic leg or (2) inducing a healthy gait pattern for the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. The effects of this assistance were evaluated in terms of interlimb symmetry with respect to spatiotemporal gait parameters such as step length or time, as well as the similarity between the joint’s motion in both legs. Results: Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease in the compensatory strategies developed by the nonparetic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the nonparetic limb. Conclusions: This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of a hemiparetic patient based on the movement of their nonparetic leg is a valuable strategy for reducing the compensatory mechanisms developed by the nonparetic limb.post-print6406 K

    Robot-assisted ankle rehabilitation for the treatment of drop foot: A case study

    Get PDF
    This paper involves the use of an intrinsically-compliant ankle rehabilitation robot for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo fluidic actuators that mimic skeletal muscles to actuate three rotational degrees of freedom (DOFs). A position controller in task space was developed to track the predefined trajectory of the end effector. The position tracking was achieved by the length tracking of each actuator in joint space by inverse kinematics. A stroke patient with drop foot participated in the trial as a case study to evaluate the potential of this robot for clinical applications. The patient gave positive feedback in using the ankle robot for the treatment of drop foot, although some limitations exist. The trajectory tracking showed satisfactory accuracy throughout the whole training with varying ranges of motion, with the root mean square deviation (RMSD) value being 0.0408 rad and the normalized root mean square deviation (NRMSD) value being 8.16%. To summarize, preliminary findings support the potential of the ankle rehabilitation robot for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects
    corecore