17,986 research outputs found

    Stroke prediction context-aware health care system

    Get PDF
    This paper proposes a prediction framework based on ontology and Bayesian Belief Networks BBN to support a medical teams in every daily. We propose a Stroke Prediction System (SPS), a new software component to handle the uncertainty of having a stroke disease by determining the risk score level. This is composed of four layers: acquisition of data, aggregation, reasoning and application. SPS senses, collects, and analyzes data of a patient, then uses wearable sensors and the mobile application to interact with the patient and staffs. When the risk reaches critical limits, SPS notifies all concerned parties, the patient, the doctor, and the emergency department. The patient profile is also updated to reflect this urgent intervention requirement. A Bayesian model is designed and implemented using the Netica tool to prove its efficiency i) by handling patient context remotely and verifying its changes locally and ii) on predicting missing probabilities and calculate the probability of high risk level for emergency cases. The SPS system improves the accuracy of decision making and uses a new ontology of stroke disease inspired from our Parkinson ontology already developed

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Prognostic Tools for Early Mortality in Hemorrhagic Stroke: Systematic Review and Meta-Analysis

    Get PDF
    Background and Purpose: Several risk scores have been developed to predict mortality in intracerebral hemorrhage (ICH). We aimed to systematically determine the performance of published prognostic tools. Methods: We searched MEDLINE and EMBASE for prognostic models (published between 2004 and April 2014) used in predicting early mortality (<6 months) after ICH. We evaluated the discrimination performance of the tools through a random-effects meta-analysis of the area under the receiver operating characteristic curve (AUC) or c-statistic. We evaluated the following components of the study validity: study design, collection of prognostic variables, treatment pathways, and missing data. Results: We identified 11 articles (involving 41,555 patients) reporting on the accuracy of 12 different tools for predicting mortality in ICH. Most studies were either retrospective or post-hoc analyses of prospectively collected data; all but one produced validation data. The Hemphill-ICH score had the largest number of validation cohorts (9 studies involving 3,819 patients) within our systematic review and showed good performance in 4 countries, with a pooled AUC of 0.80 [95% confidence interval (CI)=0.77-0.85]. We identified several modified versions of the Hemphill-ICH score, with the ICH-Grading Scale (GS) score appearing to be the most promising variant, with a pooled AUC across four studies of 0.87 (95% CI=0.84-0.90). Subgroup testing found statistically significant differences between the AUCs obtained in studies involving Hemphill-ICH and ICH-GS scores (p=0.01). Conclusions: Our meta-analysis evaluated the performance of 12 ICH prognostic tools and found greater supporting evidence for 2 models (Hemphill-ICH and ICH-GS), with generally good performance overall

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • …
    corecore