314 research outputs found

    Template Based Recognition of On-Line Handwriting

    Get PDF
    Software for recognition of handwriting has been available for several decades now and research on the subject have produced several different strategies for producing competitive recognition accuracies, especially in the case of isolated single characters. The problem of recognizing samples of handwriting with arbitrary connections between constituent characters (emph{unconstrained handwriting}) adds considerable complexity in form of the segmentation problem. In other words a recognition system, not constrained to the isolated single character case, needs to be able to recognize where in the sample one letter ends and another begins. In the research community and probably also in commercial systems the most common technique for recognizing unconstrained handwriting compromise Neural Networks for partial character matching along with Hidden Markov Modeling for combining partial results to string hypothesis. Neural Networks are often favored by the research community since the recognition functions are more or less automatically inferred from a training set of handwritten samples. From a commercial perspective a downside to this property is the lack of control, since there is no explicit information on the types of samples that can be correctly recognized by the system. In a template based system, each style of writing a particular character is explicitly modeled, and thus provides some intuition regarding the types of errors (confusions) that the system is prone to make. Most template based recognition methods today only work for the isolated single character recognition problem and extensions to unconstrained recognition is usually not straightforward. This thesis presents a step-by-step recipe for producing a template based recognition system which extends naturally to unconstrained handwriting recognition through simple graph techniques. A system based on this construction has been implemented and tested for the difficult case of unconstrained online Arabic handwriting recognition with good results

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    Djehuty : a mixed-initiative handwriting game for preschoolers

    Get PDF
    Learning to read and write is a fundamental right and a necessary skill for the personal, cultural, and economic development of people and their societies. However, children of developing countries, such as sub-Saharan areas, are currently at a greater risk of illiteracy. The current penetration of mobile technologies and the internet in sub-Saharan rural areas, however, offers a unique opportunity for tackling the challenge of literacy at a large scale. Motivated by the current shortage of preschool teachers for training handwriting in a personalised manner, this paper discusses the design of Djehuty, an educational gamified environment for preschoolers. Djehuty is equipped with an artificial intelligence module which generates a style of handwriting and suggests handwriting paths to the child in a mixed-initiative manner. The paper presents the key elements of the game prototype.peer-reviewe

    Automatic Signature Verification: The State of the Art

    Full text link

    Detecting Forgery: Forensic Investigation of Documents

    Get PDF
    Detecting Forgery reveals the complete arsenal of forensic techniques used to detect forged handwriting and alterations in documents and to identify the authorship of disputed writings. Joe Nickell looks at famous cases such as Clifford Irving\u27s autobiography of Howard Hughes and the Mormon papers of document dealer Mark Hoffman, as well as cases involving works of art. Detecting Forgery is a fascinating introduction to the growing field of forensic document examination and forgery detection. Seldom does a book about forgery come along containing depth of subject matter in addition to presenting clear and understandable information. This book has both, plus a readability that is accessible to those studying questioned documents as well as seasoned experts. -- Journal of Forensic Identification The author\u27s expertise in historical documents is unmistakably evident throughout the book. Once I began reading, I found it hard to put down. -- Journal of Questioned Document Examination Guides the reader through various methods and techniques of identifying fakes and phone manuscripts. -- Manchester (KY) Enterprisehttps://uknowledge.uky.edu/upk_legal_studies/1000/thumbnail.jp

    Incorporation of relational information in feature representation for online handwriting recognition of Arabic characters

    Get PDF
    Interest in online handwriting recognition is increasing due to market demand for both improved performance and for extended supporting scripts for digital devices. Robust handwriting recognition of complex patterns of arbitrary scale, orientation and location is elusive to date because reaching a target recognition rate is not trivial for most of the applications in this field. Cursive scripts such as Arabic and Persian with complex character shapes make the recognition task even more difficult. Challenges in the discrimination capability of handwriting recognition systems depend heavily on the effectiveness of the features used to represent the data, the types of classifiers deployed and inclusive databases used for learning and recognition which cover variations in writing styles that introduce natural deformations in character shapes. This thesis aims to improve the efficiency of online recognition systems for Persian and Arabic characters by presenting new formal feature representations, algorithms, and a comprehensive database for online Arabic characters. The thesis contains the development of the first public collection of online handwritten data for the Arabic complete-shape character set. New ideas for incorporating relational information in a feature representation for this type of data are presented. The proposed techniques are computationally efficient and provide compact, yet representative, feature vectors. For the first time, a hybrid classifier is used for recognition of online Arabic complete-shape characters based on the idea of decomposing the input data into variables representing factors of the complete-shape characters and the combined use of the Bayesian network inference and support vector machines. We advocate the usefulness and practicality of the features and recognition methods with respect to the recognition of conventional metrics, such as accuracy and timeliness, as well as unconventional metrics. In particular, we evaluate a feature representation for different character class instances by its level of separation in the feature space. Our evaluation results for the available databases and for our own database of the characters' main shapes confirm a higher efficiency than previously reported techniques with respect to all metrics analyzed. For the complete-shape characters, our techniques resulted in a unique recognition efficiency comparable with the state-of-the-art results for main shape characters

    Sketch interpretation using multiscale stochastic models of temporal patterns

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 102-114).Sketching is a natural mode of interaction used in a variety of settings. For example, people sketch during early design and brainstorming sessions to guide the thought process; when we communicate certain ideas, we use sketching as an additional modality to convey ideas that can not be put in words. The emergence of hardware such as PDAs and Tablet PCs has enabled capturing freehand sketches, enabling the routine use of sketching as an additional human-computer interaction modality. But despite the availability of pen based information capture hardware, relatively little effort has been put into developing software capable of understanding and reasoning about sketches. To date, most approaches to sketch recognition have treated sketches as images (i.e., static finished products) and have applied vision algorithms for recognition. However, unlike images, sketches are produced incrementally and interactively, one stroke at a time and their processing should take advantage of this. This thesis explores ways of doing sketch recognition by extracting as much information as possible from temporal patterns that appear during sketching.(cont.) We present a sketch recognition framework based on hierarchical statistical models of temporal patterns. We show that in certain domains, stroke orderings used in the course of drawing individual objects contain temporal patterns that can aid recognition. We build on this work to show how sketch recognition systems can use knowledge of both common stroke orderings and common object orderings. We describe a statistical framework based on Dynamic Bayesian Networks that can learn temporal models of object-level and stroke-level patterns for recognition. Our framework supports multi-object strokes, multi-stroke objects, and allows interspersed drawing of objects - relaxing the assumption that objects are drawn one at a time. Our system also supports real-valued feature representations using a numerically stable recognition algorithm. We present recognition results for hand-drawn electronic circuit diagrams. The results show that modeling temporal patterns at multiple scales provides a significant increase in correct recognition rates, with no added computational penalties.by Tevfik Metin Sezgin.Ph.D

    A. Eye Detection Using Varients of Hough Transform B. Off-Line Signature Verification

    Get PDF
    PART (A): EYE DETECTION USING VARIANTS OF HOUGH TRANSFORM: Broadly eye detection is the process of tracking the location of human eye in a face image. Previous approaches use complex techniques like neural network, Radial Basis Function networks, Multi-Layer Perceptrons etc. In the developed project human eye is modeled as a circle (iris; the black circular region of eye) enclosed inside an ellipse (eye-lashes). Due to the sudden intensity variations in the iris with respect the inner region of eye-lashes the probability of false acceptance is very less. Since the image taken is a face image the probability of false acceptance further reduces. Hough transform is used for circle (iris) and ellipse (eye-lash) detection. Hough transform was the obvious choice because of its resistance towards the holes in the boundary and noise present in the image. Image smoothing is done to reduce the presence of noise in the image further it makes the image better for further processing like edge detection (Prewitt method). Compared to the aforementioned models the proposed model is simple and efficient. The proposed model can further be improved by including various features like orientation angle of eye-lashes (which is assumed constant in the proposed model), and by making the parameters adaptive. PART (B): OFF-LINE SIGNATURE VERIFICATION: Hand-written signature is widely used for authentication and identification of individual. It has been the target for fraudulence ever since. A novel off-line signature verification algorithm has been developed and tested successfully. Since the hand-written signature can be random, because of presence of various curves and features, techniques like character recognition cannot be applied for signature verification. The proposed algorithm incorporates a soft-computing technique “CLUSTERING” for extraction of feature points from the image of the signature. These feature points or centers are updated using the clustering update equations for required number of times, then these acts as extracted feature points of the signature image. To avoid interpersonal variation 6 to 8 signature images of the same person are taken and feature points are trained. These trained feature points are compared with the test signature images and based on a specific threshold, the signature is declared original or forgery. This approach works well if there is a high variation in the original signature, but for signatures with low variation, it produces incorrect results

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes
    corecore