24,246 research outputs found

    Picasso, Matisse, or a Fake? Automated Analysis of Drawings at the Stroke Level for Attribution and Authentication

    Full text link
    This paper proposes a computational approach for analysis of strokes in line drawings by artists. We aim at developing an AI methodology that facilitates attribution of drawings of unknown authors in a way that is not easy to be deceived by forged art. The methodology used is based on quantifying the characteristics of individual strokes in drawings. We propose a novel algorithm for segmenting individual strokes. We designed and compared different hand-crafted and learned features for the task of quantifying stroke characteristics. We also propose and compare different classification methods at the drawing level. We experimented with a dataset of 300 digitized drawings with over 80 thousands strokes. The collection mainly consisted of drawings of Pablo Picasso, Henry Matisse, and Egon Schiele, besides a small number of representative works of other artists. The experiments shows that the proposed methodology can classify individual strokes with accuracy 70%-90%, and aggregate over drawings with accuracy above 80%, while being robust to be deceived by fakes (with accuracy 100% for detecting fakes in most settings)

    Evaluation of water film by reynolds' equation in deep drawing using high-pressured water jet

    Get PDF
    The authors had proposed a deep drawing method using high-pressured jet waters as lubricant. This method aimed to suppress the usage of oil or other chemical lubricants, which might require some additional processes for lubricant removal and become a nuisance in environment. The conditions had been determined through trial and error approach without knowing water behaviors as lubricant. As a result, some scars and dimples were observed on the surface of deformed cup. In the present paper, a numerical model was composed for the evaluation of the water behaviors as lubricant. Darcy-Weisbach equation was used for evaluation of pressure drop between nozzle exit and pump, while Reynolds' equation was used for the thin film of fluid between the die and blank. The data of blank deformation in FEM was considered for the determination of the thickness distribution of the fluid film. The characteristics of the water were evaluated by the composed numerical method, and the results were used for examination of lubrication characteristics in experiments

    Experimental and analytical tools for evaluation of Stirling engine rod seal behavior

    Get PDF
    The first year of a two year experimental and analytical program is reported. The program is directed at the elastohydrodynamic behavior of sliding elastomeric rod seals for the Stirling engine. During the year, experimental and analytical tools were developed for evaluating seal leakage, seal friction, and the fluid film thickness at the seal/cylinder interface

    Drawing, Handwriting Processing Analysis: New Advances and Challenges

    No full text
    International audienceDrawing and handwriting are communicational skills that are fundamental in geopolitical, ideological and technological evolutions of all time. drawingand handwriting are still useful in defining innovative applications in numerous fields. In this regard, researchers have to solve new problems like those related to the manner in which drawing and handwriting become an efficient way to command various connected objects; or to validate graphomotor skills as evident and objective sources of data useful in the study of human beings, their capabilities and their limits from birth to decline

    Thermal Error Modelling of a CNC Machine Tool Feed Drive System using FEA Method

    Get PDF
    Recirculating ball screw systems are commonly used in machine tools and are one of the major heat sources which cause considerable thermal drift in CNC machine tools. Finite Element Analysis (FEA) method has been used successfully in the past to model the thermal characteristics of machine tools with promising results. Since FEA predictions are highly dependent on the efficacy of numerical parameters including the surrounding Boundary Conditions (BC), this study emphasises on an efficient modelling method to obtain optimised numerical parameters for acquiring a qualitative response from the feed drive system model. This study was performed on a medium size Vertical Machining Centre (VMC) feed drive system in which two parameter dentification methods have been employed; the general prediction method based on formulae provided by OEMs, and the energy balance method. The parameters obtained from both methods were applied to the FEA model of the machine feed drive system and validated against experimental results. Correlation with which was increased from 70 % to 80 % using the energy balance method

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study

    Get PDF
    Background and objectives: Several anthropometric and body composition parameters have been linked to arterial stiffness (AS) as a biomarker of cardiovascular disease. However, little is known about which of these closely related factors is more strongly associated with AS. The aim of the present study was to analyze the relationship of different anthropometric and body composition parameters with AS in middle-aged adults. Materials and Methods: This cross-sectional study included 186 middle-aged participants (85 women, 101 men; age = 42.8 ± 12.6 years) evaluated as part of the Healthy UAL study, a population study conducted at the University of AlmerĂ­a with the main purpose of analyzing the etiology and risk factors associated with cardio-metabolic diseases. Anthropometric measures included neck, waist, and hip circumferences, as well as the waist-to-height ratio (WHtr). Bioimpedance-derived parameters included fat-free mass index (FFMI), fat mass index (FMI), and percent of body fat (%BF). AS was measured by pulse wave velocity (PWV). The relationships of interest were examined through stepwise regression analyses in which age and sex were also introduced as potential confounders. Results: Neck circumference (in the anthropometric model; R2: 0.889; ÎČ: age = 0.855, neck = 0.204) and FFMI (in the bio-impedance model; R2: 0.891; ÎČ: age = 0.906, FFMI = 0.199) emerged as significant cross-sectional predictors of AS. When all parameters were included together (both anthropometry and bio-impedance), both neck circumference and FFMI appeared again as being significantly associated with AS (R2: 0.894; ÎČ: age = 0.882, FFMI = 0.126, neck = 0.093). Conclusion: It was concluded that FFMI and neck circumference are correlated with AS regardless of potential confounders and other anthropometric and bioimpedance-derived parameters in middle-aged adults
    • 

    corecore