420 research outputs found

    Strip Planarity Testing of Embedded Planar Graphs

    Full text link
    In this paper we introduce and study the strip planarity testing problem, which takes as an input a planar graph G(V,E)G(V,E) and a function γ:V→{1,2,…,k}\gamma:V \rightarrow \{1,2,\dots,k\} and asks whether a planar drawing of GG exists such that each edge is monotone in the yy-direction and, for any u,v∈Vu,v\in V with γ(u)<γ(v)\gamma(u)<\gamma(v), it holds y(u)<y(v)y(u)<y(v). The problem has strong relationships with some of the most deeply studied variants of the planarity testing problem, such as clustered planarity, upward planarity, and level planarity. We show that the problem is polynomial-time solvable if GG has a fixed planar embedding.Comment: 24 pages, 12 figures, extended version of 'Strip Planarity Testing' (21st International Symposium on Graph Drawing, 2013

    Clustered Planarity with Pipes

    Get PDF
    We study the version of the C-Planarity problem in which edges connecting the same pair of clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give algorithms to decide several families of instances for the two variants in which the order of the pipes around each cluster is given as part of the input or can be chosen by the algorithm

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201

    Embedding Four-directional Paths on Convex Point Sets

    Full text link
    A directed path whose edges are assigned labels "up", "down", "right", or "left" is called \emph{four-directional}, and \emph{three-directional} if at most three out of the four labels are used. A \emph{direction-consistent embedding} of an \mbox{nn-vertex} four-directional path PP on a set SS of nn points in the plane is a straight-line drawing of PP where each vertex of PP is mapped to a distinct point of SS and every edge points to the direction specified by its label. We study planar direction-consistent embeddings of three- and four-directional paths and provide a complete picture of the problem for convex point sets.Comment: 11 pages, full conference version including all proof

    Subexponential-Time and FPT Algorithms for Embedded Flat Clustered Planarity

    Full text link
    The C-Planarity problem asks for a drawing of a clustered graph\textit{clustered graph}, i.e., a graph whose vertices belong to properly nested clusters, in which each cluster is represented by a simple closed region with no edge-edge crossings, no region-region crossings, and no unnecessary edge-region crossings. We study C-Planarity for embedded flat clustered graphs\textit{embedded flat clustered graphs}, graphs with a fixed combinatorial embedding whose clusters partition the vertex set. Our main result is a subexponential-time algorithm to test C-Planarity for these graphs when their face size is bounded. Furthermore, we consider a variation of the notion of embedded tree decomposition\textit{embedded tree decomposition} in which, for each face, including the outer face, there is a bag that contains every vertex of the face. We show that C-Planarity is fixed-parameter tractable with the embedded-width of the underlying graph and the number of disconnected clusters as parameters.Comment: 14 pages, 6 figure

    Hanani-Tutte for radial planarity

    Get PDF
    A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth

    Grid Recognition: Classical and Parameterized Computational Perspectives

    Get PDF
    Grid graphs, and, more generally, k×rk\times r grid graphs, form one of the most basic classes of geometric graphs. Over the past few decades, a large body of works studied the (in)tractability of various computational problems on grid graphs, which often yield substantially faster algorithms than general graphs. Unfortunately, the recognition of a grid graph is particularly hard -- it was shown to be NP-hard even on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results in this regard in the framework of parameterized complexity (additionally, we present new and complementary hardness results). Specifically, our contribution is threefold. First, we show that the problem is fixed-parameter tractable (FPT) parameterized by k+mcck+\mathsf {mcc} where mcc\mathsf{mcc} is the maximum size of a connected component of GG. This also implies that the problem is FPT parameterized by td+k\mathtt{td}+k where td\mathtt{td} is the treedepth of GG (to be compared with the hardness for pathwidth 2 where k=3k=3). Further, we derive as a corollary that strip packing is FPT with respect to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was previously only known to be in XP. Second, we present a new parameterization, denoted aGa_G, relating graph distance to geometric distance, which may be of independent interest. We show that the problem is para-NP-hard parameterized by aGa_G, but FPT parameterized by aGa_G on trees, as well as FPT parameterized by k+aGk+a_G. Third, we show that the recognition of k×rk\times r grid graphs is NP-hard on graphs of pathwidth 2 where k=3k=3. Moreover, when kk and rr are unrestricted, we show that the problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of pathwidth 1
    • …
    corecore