668 research outputs found

    Dualities in CHL-Models

    Full text link
    We define a very general class of CHL-models associated with any string theory (bosonic or supersymmetric) compactified on an internal CFT C x T^d. We take the orbifold by a pair (g,\delta), where g is a (possibly non-geometric) symmetry of C and \delta is a translation along T^d. We analyze the T-dualities of these models and show that in general they contain Atkin-Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T^6 or type II on K3 x T^2, as well as the `monstrous' CHL-models based on a compactification of heterotic string theory on the Frenkel-Lepowsky-Meurman CFT V^{\natural}.Comment: 18 page

    BPS Algebras, Genus Zero, and the Heterotic Monster

    Full text link
    In this note, we expand on some technical issues raised in \cite{PPV} by the authors, as well as providing a friendly introduction to and summary of our previous work. We construct a set of heterotic string compactifications to 0+1 dimensions intimately related to the Monstrous moonshine module of Frenkel, Lepowsky, and Meurman (and orbifolds thereof). Using this model, we review our physical interpretation of the genus zero property of Monstrous moonshine. Furthermore, we show that the space of (second-quantized) BPS-states forms a module over the Monstrous Lie algebras mg\mathfrak{m}_g---some of the first and most prominent examples of Generalized Kac-Moody algebras---constructed by Borcherds and Carnahan. In particular, we clarify the structure of the module present in the second-quantized string theory. We also sketch a proof of our methods in the language of vertex operator algebras, for the interested mathematician.Comment: 19 pages, 2 figure

    Fricke S-duality in CHL models

    Get PDF
    We consider four dimensional CHL models with sixteen spacetime supersymmetries obtained from orbifolds of type IIA superstring on K3 x T^2 by a Z_N symmetry acting (possibly) non-geometrically on K3. We show that most of these models (in particular, for geometric symmetries) are self-dual under a weak-strong duality acting on the heterotic axio-dilaton modulus S by a "Fricke involution" S --> -1/NS. This is a novel symmetry of CHL models that lies outside of the standard SL(2,Z)-symmetry of the parent theory, heterotic strings on T^6. For self-dual models this implies that the lattice of purely electric charges is N-modular, i.e. isometric to its dual up to a rescaling of its quadratic form by N. We verify this prediction by determining the lattices of electric and magnetic charges in all relevant examples. We also calculate certain BPS-saturated couplings and verify that they are invariant under the Fricke S-duality. For CHL models that are not self-dual, the strong coupling limit is dual to type IIA compactified on T^6/Z_N, for some Z_N-symmetry preserving half of the spacetime supersymmetries.Comment: 56 pages, 3 figures; v3: some minor mistakes correcte

    Fricke S-duality in CHL models

    Get PDF
    open2siopenPersson, Daniel; Volpato, RobertoPersson, Daniel; Volpato, Robert

    Crosscaps in Gepner Models and the Moduli space of T2 Orientifolds

    Get PDF
    We study T^2 orientifolds and their moduli space in detail. Geometrical insight into the involutive automorphisms of T^2 allows a straightforward derivation of the moduli space of orientifolded T^2s. Using c=3 Gepner models, we compare the explicit worldsheet sigma model of an orientifolded T^2 compactification with the CFT results. In doing so, we derive half-supersymmetry preserving crosscap coefficients for generic unoriented Gepner models using simple current techniques to construct the charges and tensions of Calabi-Yau orientifold planes. For T^2s we are able to identify the O-plane charge directly as the number of fixed points of the involution; this number plays an important role throughout our analysis. At several points we make connections with the mathematical literature on real elliptic curves. We conclude with a preliminary extension of these results to elliptically fibered K3s.Comment: LaTeX, 59 pages, 21 figures (uses axodraw

    An Uplifting Discussion of T-Duality

    Full text link
    It is well known that string theory has a T-duality symmetry relating circle compactifications of large and small radius. This symmetry plays a foundational role in string theory. We note here that while T-duality is order two acting on the moduli space of compactifications, it is order four in its action on the conformal field theory state space. More generally, involutions in the Weyl group W(G)W(G) which act at points of enhanced GG symmetry have canonical lifts to order four elements of GG, a phenomenon first investigated by J. Tits in the mathematical literature on Lie groups and generalized here to conformal field theory. This simple fact has a number of interesting consequences. One consequence is a reevaluation of a mod two condition appearing in asymmetric orbifold constructions. We also briefly discuss the implications for the idea that T-duality and its generalizations should be thought of as discrete gauge symmetries in spacetime.Comment: 47 pages, claims regarding Z4Z_4 valued cocycles remove
    • …
    corecore