6,809 research outputs found

    Research Issues in Cloud Computing

    Get PDF
    Cloud computing moved away from personal computers and the individual enterprise application server to services provided by the cloud of computers The emergence of cloud computing has made a tremendous impact on the Information Technology IT industry over the past few years Currently IT industry needs Cloud computing services to provide best opportunities to real world Cloud computing is in initial stages with many issues still to be addressed The objective of this paper is to explore the different issues of cloud computing and identify important research opportunities in this increasingly important area We present different design challenges categorized under security challenges Data Challenges Performance challenges and other Design Challenge

    Cloud Cost Optimization: A Comprehensive Review of Strategies and Case Studies

    Full text link
    Cloud computing has revolutionized the way organizations manage their IT infrastructure, but it has also introduced new challenges, such as managing cloud costs. This paper explores various techniques for cloud cost optimization, including cloud pricing, analysis, and strategies for resource allocation. Real-world case studies of these techniques are presented, along with a discussion of their effectiveness and key takeaways. The analysis conducted in this paper reveals that organizations can achieve significant cost savings by adopting cloud cost optimization techniques. Additionally, future research directions are proposed to advance the state of the art in this important field

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe

    Load Balancer using Whale-Earthworm Optimization for Efficient Resource Scheduling in the IoT-Fog-Cloud Framework

    Get PDF
    Cloud-Fog environment is useful in offering optimized services to customers in their daily routine tasks. With the exponential usage of IoT devices, a huge scale of data is generated. Different service providers use optimization scheduling approaches to optimally allocate the scarce resources in the Fog computing environment to meet job deadlines. This study introduces the Whale-EarthWorm Optimization method (WEOA), a powerful hybrid optimization method for improving resource management in the Cloud-Fog environment. Striking a balance between exploration and exploitation of these approaches is difficult, if only Earthworm or Whale optimization methods are used. Earthworm technique can result in inefficiency due to its investigations and additional overhead, whereas Whale algorithm, may leave scope for improvement in finding the optimal solutions using its exploitation.  This research introduces an efficient task allocation method as a novel load balancer. It leverages an enhanced exploration phase inspired by the Earthworm algorithm and an improved exploitation phase inspired by the Whale algorithm to manage the optimization process. It shows a notable performance enhancement, with a 6% reduction in response time, a 2% decrease in cost, and a 2% improvement in makespan over EEOA. Furthermore, when compared to other approaches like h-DEWOA, CSDEO, CSPSO, and BLEMO, the proposed method achieves remarkable results, with response time reductions of up to 82%, cost reductions of up to 75%, and makespan improvements of up to 80%

    Scheduling Algorithms for Cloud: A Survey and Analysis

    Get PDF
    Cloud Computing is a fast growing computing paradigm due to the vast benefits it provides to the users. Scheduling becomes one of the key aspects due to the pay-as-you-go nature of the Cloud. The factors affecting the technique of scheduling applied change with change in scenarios. For instance for scheduling in hybrid clouds the data transfer speed has to be taken into consideration whereas for mobile environments scheduling becomes dependent on context change. Moreover scheduling can be improvised on many fronts such as energy efficiency, cost minimization, Maximization of resource utilization, etc. This paper surveys scheduling techniques in various Cloud Computing scenarios and sites the most efficient scheduling technique available for a particular set of user needs by comparing various techniques and the problems they address

    Topics in Power Usage in Network Services

    Get PDF
    The rapid advance of computing technology has created a world powered by millions of computers. Often these computers are idly consuming energy unnecessarily in spite of all the efforts of hardware manufacturers. This thesis examines proposals to determine when to power down computers without negatively impacting on the service they are used to deliver, compares and contrasts the efficiency of virtualisation with containerisation, and investigates the energy efficiency of the popular cryptocurrency Bitcoin. We begin by examining the current corpus of literature and defining the key terms we need to proceed. Then we propose a technique for improving the energy consumption of servers by moving them into a sleep state and employing a low powered device to act as a proxy in its place. After this we move on to investigate the energy efficiency of virtualisation and compare the energy efficiency of two of the most common means used to do this. Moving on from this we look at the cryptocurrency Bitcoin. We consider the energy consumption of bitcoin mining and if this compared with the value of bitcoin makes this profitable. Finally we conclude by summarising the results and findings of this thesis. This work increases our understanding of some of the challenges of energy efficient computation as well as proposing novel mechanisms to save energy

    Secure Multi-Path Selection with Optimal Controller Placement Using Hybrid Software-Defined Networks with Optimization Algorithm

    Get PDF
    The Internet's growth in popularity requires computer networks for both agility and resilience. Recently, unable to satisfy the computer needs for traditional networking systems. Software Defined Networking (SDN) is known as a paradigm shift in the networking industry. Many organizations are used SDN due to their efficiency of transmission. Striking the right balance between SDN and legacy switching capabilities will enable successful network scenarios in architecture networks. Therefore, this object grand scenario for a hybrid network where the external perimeter transport device is replaced with an SDN device in the service provider network. With the moving away from older networks to SDN, hybrid SDN includes both legacy and SDN switches. Existing models of SDN have limitations such as overfitting, local optimal trapping, and poor path selection efficiency. This paper proposed a Deep Kronecker Neural Network (DKNN) to improve its efficiency with a moderate optimization method for multipath selection in SDN. Dynamic resource scheduling is used for the reward function the learning performance is improved by the deep reinforcement learning (DRL) technique. The controller for centralised SDN acts as a network brain in the control plane. Among the most important duties network is selected for the best SDN controller. It is vulnerable to invasions and the controller becomes a network bottleneck. This study presents an intrusion detection system (IDS) based on the SDN model that runs as an application module within the controller. Therefore, this study suggested the feature extraction and classification of contractive auto-encoder with a triple attention-based classifier. Additionally, this study leveraged the best performing SDN controllers on which many other SDN controllers are based on OpenDayLight (ODL) provides an open northbound API and supports multiple southbound protocols. Therefore, one of the main issues in the multi-controller placement problem (CPP) that addresses needed in the setting of SDN specifically when different aspects in interruption, ability, authenticity and load distribution are being considered. Introducing the scenario concept, CPP is formulated as a robust optimization problem that considers changes in network status due to power outages, controller’s capacity, load fluctuations and changes in switches demand. Therefore, to improve network performance, it is planned to improve the optimal amount of controller placements by simulated annealing using different topologies the modified Dragonfly optimization algorithm (MDOA)

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri
    • …
    corecore