2,886 research outputs found

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Design of One-Coincidence Frequency Hopping Sequence Sets for FHMA Systems

    Get PDF
    Department of Electrical EngineeringIn the thesis, we discuss frequency hopping multiple access (FHMA) systems and construction of optimal frequency hopping sequence and applications. Moreover, FHMA is widely used in modern communication systems such as Bluetooth, ultrawideband (UWB), military, etc. For these systems, it is desirable to employ frequency-hopping sequences (FHSs) having low Hamming correlation in order to reduce the multiple-access interference. In general, optimal FHSs with respect to the Lempel-Greenberger bound do not always exist for all lengths and frequency set sizes. Therefore, it is an important problem to verify whether an optimal FHS with respect to the Lempel-Greenberger bound exists or not for a given length and a given frequency set size. I constructed FHS satisfying optimal with respect to the Lempel-Greenberger bound and Peng-Fan bound for efficiency of available frequency. Parameters of a new OC-FHS set are length p^2-p over Z_(p^2 ) by using a primitive element of Z_p. The new OC-FHS set with H_a (X)=0 and H_c (X)=1 can be applied to several recent applications using ISM band (e.g. IoT) based on BLE and Zigbee. In the construction and theorem, I used these mathematical back grounds in preliminaries (i.e., finite field, primitive element, primitive polynomial, frequency hopping sequence, multiple frequency shift keying, DS/CDMA) in order to prove mathematically. The outline of thesis is as follows. In preliminaries, we explain algorithm for minimal polynomial for sequence, linear complexities, Hamming correlation and bounds for FHSs and some applications are presented. In section ???, algorithm for complexity, correlation and bound for FHSs and some applications are presented. In section ???, using information in section ??? and ???, a new construction of OC-FHS is presented. In order to prove the optimality of FHSs, all cases of Hamming autocorrelation and Hamming cross-correlation are mathematically calculated. Moreover, in order to raise data rate or the number of users, a new method is presented. Using this method, sequences are divided into two times of length and satisfies Lempel-Greenberger bound and Peng-Fan bound.clos
    • 

    corecore