23 research outputs found

    Strict finitism, feasibility, and the sorites

    Get PDF
    This paper bears on four topics: observational predicates and phenomenal properties, vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability. It is argued that reactions to strict finitism point towards a seman- tics for vague predicates in the form of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize the notion of feasibility as understood in computational complexity theory. The approach described eschews the use of non-classical logic and related devices like degrees of truth or supervaluation. Like epistemic approaches to vagueness, it may thus be smoothly integrated with the use of classical model theory as widely employed in natural language semantics. But unlike epistemicism, the described approach fails to imply either the existence of sharp boundaries or the failure of tolerance for soritical predicates. Applications of measurement theory (in the sense of Krantz et al. 1971) to vagueness in the nonstandard setting are also explored

    Strict finitism as a foundation for mathematics

    Get PDF
    The principal focus of this research is a comprehensive defence of the theory of strict finitism as a foundation for mathematics. I have three broad aims in the thesis; firstly, to offer as complete and developed account of the theory of strict finitism as it has been described and discussed in the literature. I detail the commitments and claims of the theory, and discuss the best ways in which to present the theory. Secondly, I consider the main objections to strict finitism, in particular a number of claims that have been made to the effect that strict finitism is, as it stands, incoherent. Many of these claims I reject, but one, which focuses on the problematic notion of vagueness to which the strict finites seems committed, I suggest, calls for some revision or further development of the strict finitist’s position. The third part of this thesis is therefore concerned with such development, and I discuss various options for strict finitism, ranging from the development of a trivalent semantic, to a rejection of the commitment to vagueness in the first instance

    On the Coherence of Strict Finitism

    Get PDF
    Strict finitism is the position that only those natural numbers exist that we can represent in practice. Michael Dummett, in a paper called Wang’s Paradox, famously tried to show that strict finitism is an incoherent position. By using the Sorites paradox, he claimed that certain predicates the strict finitist is committed to are incoherent. More recently, Ofra Magidor objected to Dummett’s claims, arguing that Dummett fails to show the incoherence of strict finitism. In this paper, I shall investigate whether Magidor is successful in preventing Dummett from proving the incoherence of strict finitism. Though not all the counterarguments Magidor presents are successful, she does in the end manages to corner Dummett. There remains a small opportunity for Dummett to insist on the incoherence of strict finitism, but this is a very small opening. The final conclusion of this paper is that Dummett cannot logically prove the incoherence of strict finitism, even though not all hope is lost

    Strict Finitism's Unrequited Love for Computational Complexity

    Get PDF
    As a philosophy of mathematics, strict finitism has been traditionally concerned with the notion of feasibility, defended mostly by appealing to the physicality of mathematical practice. This has led the strict finitists to influence and be influenced by the field of computational complexity theory, under the widely held belief that this branch of mathematics is concerned with the study of what is “feasible in practice”. In this paper, I survey these ideas and contend that, contrary to popular belief, complexity theory is not what the ultrafinitists think it is, and that it does not provide a theoretical framework in which to formalize their ideas —at least not while defending the material grounds for feasibility. I conclude that the subject matter of complexity theory is not proving physical resource bounds in computation, but rather proving the absence of exploitable properties in a search space

    Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics

    Get PDF
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert mathematics. The following four essential problems are considered for the idea to be elucidated: Fermat’s last theorem proved by Andrew Wiles; Poincaré’s conjecture proved by Grigori Perelman and the only resolved from the seven Millennium problems offered by the Clay Mathematics Institute (CMI); the four-color theorem proved “machine-likely” by enumerating all cases and the crucial software assistance; the Yang-Mills existence and mass gap problem also suggested by CMI and yet unresolved. They are intentionally chosen to belong to quite different mathematical areas (number theory, topology, mathematical physics) just to demonstrate the power of the approach able to unite and even unify them from the viewpoint of Hilbert mathematics. Also, specific ideas relevant to each of them are considered. Fermat’s last theorem is shown as a Gödel insoluble statement by means of Yablo’s paradox. Thus, Wiles’s proof as a corollary from the modularity theorem and thus needing both arithmetic and set theory involves necessarily an inverse Grothendieck universe. On the contrary, its proof in “Fermat arithmetic” introduced by “epoché to infinity” (following the pattern of Husserl’s original “epoché to reality”) can be suggested by Hilbert arithmetic relevant to Hilbert mathematics, the mediation of which can be removed in the final analysis as a “Wittgenstein ladder”. Poincaré’s conjecture can be reinterpreted physically by Minkowski space and thus reduced to the “nonstandard homeomorphism” of a bit of information mathematically. Perelman’s proof can be accordingly reinterpreted. However, it is valid in Gödel (or Gödelian) mathematics, but not in Hilbert mathematics in general, where the question of whether it holds remains open. The four-color theorem can be also deduced from the nonstandard homeomorphism at issue, but the available proof by enumerating a finite set of all possible cases is more general and relevant to Hilbert mathematics as well, therefore being an indirect argument in favor of the validity of Poincaré’s conjecture in Hilbert mathematics. The Yang-Mills existence and mass gap problem furthermore suggests the most general viewpoint to the relation of Hilbert and Gödel mathematics justifying the qubit Hilbert space as the dual counterpart of Hilbert arithmetic in a narrow sense, in turn being inferable from Hilbert arithmetic in a wide sense. The conjecture that many if not almost all great problems in contemporary mathematics rely on (or at least relate to) the Gödel incompleteness is suggested. It implies that Hilbert mathematics is the natural medium for their discussion or eventual solutions

    Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?

    Get PDF
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. Thus, the pair of arithmetic and set are to be similar to Euclidean and non-Euclidean geometries distinguishably only by the Fifth postulate now, i.e. after replacing it and its negation correspondingly by the axiom of finiteness (induction) versus that of finiteness being idempotent negations to each other. Indeed, the axiom of choice, as far as it is equivalent to the well-ordering “theorem”, transforms any set in a well-ordering either necessarily finite according to the axiom of induction or also optionally infinite according to the axiom of infinity. So, the Gödel incompleteness statement relies on the logical contradiction of the axiom of induction and the axiom of infinity in the final analysis. Nonetheless, both can be considered as two idempotent versions of the same axiom (analogically to the Fifth postulate) and then unified after logicism and its inherent intensionality since the opposition of finiteness and infinity can be only extensional (i.e., relevant to the elements of any set rather than to the set by itself or its characteristic property being a proposition). So, the pathway for interpreting the Gödel incompleteness statement as an axiom and the originating from that assumption for “Hilbert mathematics” accepting its negation is pioneered. A much wider context relevant to realizing the Gödel incompleteness statement as a metamathematical axiom is consistently built step by step. The horizon of Hilbert mathematics is the proper subject in the third part of the paper, and a reinterpretation of Gödel’s papers (1930; 1931) as an apology of logicism as the only consistent foundations of mathematics is the topic of the next second part

    Metasemantics and fuzzy mathematics

    Get PDF
    The present thesis is an inquiry into the metasemantics of natural languages, with a particular focus on the philosophical motivations for countenancing degreed formal frameworks for both psychosemantics and truth-conditional semantics. Chapter 1 sets out to offer a bird's eye view of our overall research project and the key questions that we set out to address. Chapter 2 provides a self-contained overview of the main empirical findings in the cognitive science of concepts and categorisation. This scientific background is offered in light of the fact that most variants of psychologically-informed semantics see our network of concepts as providing the raw materials on which lexical and sentential meanings supervene. Consequently, the metaphysical study of internalistically-construed meanings and the empirical study of our mental categories are overlapping research projects. Chapter 3 closely investigates a selection of species of conceptual semantics, together with reasons for adopting or disavowing them. We note that our ultimate aim is not to defend these perspectives on the study of meaning, but to argue that the project of making them formally precise naturally invites the adoption of degreed mathematical frameworks (e.g. probabilistic or fuzzy). In Chapter 4, we switch to the orthodox framework of truth-conditional semantics, and we present the limitations of a philosophical position that we call "classicism about vagueness". In the process, we come up with an empirical hypothesis for the psychological pull of the inductive soritical premiss and we make an original objection against the epistemicist position, based on computability theory. Chapter 5 makes a different case for the adoption of degreed semantic frameworks, based on their (quasi-)superior treatments of the paradoxes of vagueness. Hence, the adoption of tools that allow for graded membership are well-motivated under both semantic internalism and semantic externalism. At the end of this chapter, we defend an unexplored view of vagueness that we call "practical fuzzicism". Chapter 6, viz. the final chapter, is a metamathematical enquiry into both the fuzzy model-theoretic semantics and the fuzzy Davidsonian semantics for formal languages of type-free truth in which precise truth-predications can be expressed

    Science as Social Existence: Heidegger and the Sociology of Scientific Knowledge

    Get PDF
    REVIEW (1): "Jeff Kochan’s book offers both an original reading of Martin Heidegger’s early writings on science and a powerful defense of the sociology of scientific knowledge (SSK) research program. Science as Social Existence weaves together a compelling argument for the thesis that SSK and Heidegger’s existential phenomenology should be thought of as mutually supporting research programs." (Julian Kiverstein, in Isis) ---- REVIEW (2): "I cannot in the space of this review do justice to the richness and range of Kochan's discussion [...]. There is a great deal in this foundational portion of Kochan's discussion that I find tremendously interesting and engaging [...]." (David R. Cerbone, in Studies in History and Philosophy of Science) ---- REVIEW (3): "Science as Social Existence will be of interest not only to Heidegger scholars but to anyone engaged in science and technology studies. [...] This is an informative and original book. Kochan should be praised for his clear, pleasant-to-read prose." (Michael Butler, in CHOICE
    corecore