3,916 research outputs found

    Further towards unambiguous edge bundling: Investigating power-confluent drawings for network visualization

    Get PDF
    Bach et al. [1] recently presented an algorithm for constructing confluent drawings, by leveraging power graph decomposition to generate an auxiliary routing graph. We identify two problems with their method and offer a single solution to solve both. We also classify the exact type of confluent drawings that the algorithm can produce as 'power-confluent', and prove that it is a subclass of the previously studied 'strict confluent' drawing. A description and source code of our implementation is also provided, which additionally includes an improved method for power graph construction

    Power graph visualizations for event logs

    Get PDF

    The Widths of Strict Outerconfluent Graphs

    Full text link
    Strict outerconfluent drawing is a style of graph drawing in which vertices are drawn on the boundary of a disk, adjacencies are indicated by the existence of smooth curves through a system of tracks within the disk, and no two adjacent vertices are connected by more than one of these smooth tracks. We investigate graph width parameters on the graphs that have drawings in this style. We prove that the clique-width of these graphs is unbounded, but their twin-width is bounded.Comment: 15 pages, 2 figure

    Edge-Path Bundling: A Less Ambiguous Edge Bundling Approach

    Get PDF
    Edge bundling techniques cluster edges with similar attributes (i.e. similarity in direction and proximity) together to reduce the visual clutter. All edge bundling techniques to date implicitly or explicitly cluster groups of individual edges, or parts of them, together based on these attributes. These clusters can result in ambiguous connections that do not exist in the data. Confluent drawings of networks do not have these ambiguities, but require the layout to be computed as part of the bundling process. We devise a new bundling method, Edge-Path bundling, to simplify edge clutter while greatly reducing ambiguities compared to previous bundling techniques. Edge-Path bundling takes a layout as input and clusters each edge along a weighted, shortest path to limit its deviation from a straight line. Edge-Path bundling does not incur independent edge ambiguities typically seen in all edge bundling methods, and the level of bundling can be tuned through shortest path distances, Euclidean distances, and combinations of the two. Also, directed edge bundling naturally emerges from the model. Through metric evaluations, we demonstrate the advantages of Edge-Path bundling over other techniques

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Graph Creation, Visualisation and Transformation

    Full text link
    We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting

    Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer

    Get PDF
    The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the “tragedy of the commons,” which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors
    corecore