768 research outputs found

    Printable stretchable interconnects

    Get PDF
    This article presents recent progress and a comprehensive overview of stretchable interconnects based on printable nanocomposites. Nanocomposite-based inks for printed stretchable interconnects have been categorized according to dispersed filler materials. They comprise of carbon-based fillers and metal-based fillers. Benefits in terms of excellent electrical performance and elastic properties make nanocomposites the ideal candidates for stretchable interconnect applications. Deeper analysis of nanocomposites-based stretchable interconnects includes the correlation between the size of fillers, percolation ratio, maximum electrical conductivity and mechanical elasticity. The key trends in the field have been highlighted using curve fitting methods on large data collected from the literature. Furthermore, a wide variety of applications for stretchable interconnects are presented

    Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Full text link
    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS)-type) process recipes using bulk integrated circuit (IC) microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R) post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic) stretch beyond 3000%, with 10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.Comment: 13 pages, 5 figure, journal publicatio

    A new low cost, elastic and conformable electronics technology for soft and stretchable electronic devices by use of a stretchable substrate

    Get PDF
    A growing need for ambient electronics in our daily life leads to higher demands from the user in the view of comfort of the electronic devices. Those devices should become invisible to the user, especially when they are embedded in clothes (e.g. in smart textiles). They should be soft, conformable and to a certain degree stretchable. Electronics for implantation on the other hand should ideally be soft and conformable in relation to the body tissue, in order to minimize the rejecting nature of the body to unknown implanted rigid objects. Conformable and elastic circuitry is an emerging topic in the electronics and packaging domain. In this contribution a new low cost, elastic and stretchable electronic device technology will be presented, based on the use of a stretchable substrate. The process steps used are standard PCB fabrication processes, resulting in a fast technology transfer to the industry. This new developed technology is based on the combination of rigid standard SMD components which are connected with 2-D spring-shaped metallic interconnections. Embedding is done by moulding the electronic device in a stretchable polymer. The reliability of the overall system is improved by varying the thickness of the embedding polymer, wherever the presence and type of components requires to. Manufacturability issues are discussed together with the need for good reliability of the stretchable interconnections when stress is applied during stretching

    Metal-organic dual layer structure for stretchable interconnects

    Get PDF
    This paper reports a novel method for obtaining stretchable interconnects using gold and organic material (PEDOT:PSS) in a dual-layer structure on PDMS substrate. With an appropriate design and carefully carried out microfabrication steps, the structure was successfully patterned into serpentine shape and highly stretchable interconnects were obtained. The fabricated interconnects can be stretched up to 170% of their original length while retaining an adequate level of conductivity

    Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors.

    Get PDF
    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach

    In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect

    Get PDF
    Electronic devices capable of performing in extreme mechanical conditions such as stretching, bending, or twisting will improve biomedical and wearable systems. The required capabilities cannot be achieved with conventional building geometries, because of structural rigidity and lack of mechanical stretchability. In this article, a zigzag-patterned structure representing a stretchable interconnect is presented as a promising type of building block. In situ experimental observations on the deformed interconnect are correlated with numerical analysis, providing an understanding of the deformation and failure mechanisms. The experimental results demonstrate that the zigzag-patterned interconnect enables stretchability up to 60% without rupture. This stretchability is accommodated by in-plane rotation of arms and out-of-plane deformation of crests. Numerical analysis shows that the dominating failure cause is interfacial in-plane shear stress. The plastic strain concentration at the arms close to the crests, obtained by numerical simulation, agrees well with the failure location observed in the experiment

    Microfluidics for Soft Electronics

    Get PDF
    Microfluidics- based soft electronic systems have the potential to assist conventional rigid devices and circuits to achieve extreme levels of elasticity in wearable electronics and other applications. The goal of employing microfluidics-based approach among other existing methods is to enhance users comfort through fulfillment of wearable’s mechanical performance requirements such as flexibility, twistability, and stretchability. This chapter presents a brief survey of different solutions for developing elastic electronics and a thorough review of the progress in microfluidics-based approaches. This chapter mainly focuses on the description of the fabrication process, design, and measurement steps of different antennas and complex systems realized using microfluidic interconnects

    Elastomeric Electronics: A Microfluidic Approach

    Get PDF
    • …
    corecore