2,151 research outputs found

    Development of Galvanic Skin Response Sensor System to Measure Mental Stress

    Get PDF
    Stress is a very normal reaction when a person is feel threaten or upset in some way. Generally, stress happen when a person ability is not able to meet with the situational demands. It can be either positive or negative. Stress can give a person to have high concentration to face certain circumstances as well as better reaction to handle difficult situation. On the other side, it can also cause sickness to a person if one is suffer from overstress. A person will have health issues like the risk of depression and neurological disorders like stroke if mental stress level is too high. Thus, a device is necessary to measure the stress level so that the stress level can be regulate before it is out of control. Although there are several of methods in the market that are able to measure the stress level, but there are all expensive and complicated. Thus, this project will be focusing on developing a Galvanic Skin Response Sensor that are able to measure stress level based on the skin conductivity. GSR sensor is an economical tool to measure stress level with simpler analysis. Complete methodology and findings are shown as we go through the report

    Stress level assessment with non-intrusive sensors

    Get PDF
    Mención Internacional en el título de doctorStress is an involuntary reaction where the human body changes from a calm state to an excited state in order to preserve the integrity of the organism. Small amount of stress should be good to became entrepreneur and learn new ways of thinking, but continuous stress can carry an array of daily risks, such as, cardiovascular diseases, hair loss, diabetes or immune dysregulation. Recognize how, when and where it occurs has become a step in stress assessment. Stress recognition starts from 1973 until now. This disease has become a problem in recent years because has increased the number of cases, especially in workers where his/her performance decreases. Stress reactions are provoked for the Autonomous Nervous System (ANS) and one way to estimate it could be found in physiological signals. A list of a variety wearable sensor is presented to capture these reactions, trying to minimize the risk of distraction due to external factors. The aim of this work thesis is to detect stress for level assessment. A combination of different physiological signals is selected to extract stress feature an classify in a rating scale from relax to breakdown situations. This thesis proposes a new feature extraction model to understand physiological Galvanic Skin Response (GSR) reactions. Last methods conclude in incongruent results that are not interpretable. This model propose a robust algorithm that can be used in real-time (low time computability) and results are sparse in time to obtain an easily statistical and graphical interpretation. Signal processing methods of heart rhythm and hormone cortisol are included to develop a robust feature extraction method of stress reactions. A combination of electrodermal, heart and hormone analysis is presented to know in real-time the state of the individual. These features have been selected because the acquisition is non-intrusive avoiding other factor such as distractions. This thesis is application-focused and highly multidisciplinary. A complete feature extraction model is presented including the new electrodermal model named and usual heart rhythm techniques. Three experiments were evaluated: a) a feature selection model using neurocognitive games, b) a stress classifier in time during public talks, and c) a real-time stress assessment classifier in a five-star rating scale. This thesis improve stress detection overcoming a system to capture physiological responses, analyze and conclude a stress assessment decision. We discussed past state of the art and propose a new method of feature extraction using signal processing improvements. Three different scenarios were evaluated to confirm the achievement of aims proposed.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Joaquín Míguez Arenas.- Secretario: Luis Ignacio Santamaría Caballero.- Vocal: Mª Isabel Valera Martíne

    Non-intrusive Physiological Monitoring for Affective Sensing of Computer Users

    Get PDF

    IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING

    Get PDF
    The rise of internet connected devices has enabled the home with a vast amount of enhancements to make life more convenient. These internet connected devices can be used to form a community of devices known as the internet of things (IoT). There is great value in IoT devices to promote healthy independent living for older adults. Fall-related injuries has been one of the leading causes of death in older adults. For example, every year more than a third of people over 65 in the U.S. experience a fall, of which up to 30 percent result in moderate to severe injury. Therefore, this thesis proposes an IoT-based fall detection system for smart home environments that not only to send out alerts, but also launches interaction models, such as voice assistance and camera monitoring. Such connectivity could allow older adults to interact with the system without concern of a learning curve. The proposed IoT-based fall detection system will enable family and caregivers to be immediately notified of the event and remotely monitor the individual. Integrated within a smart home environment, the proposed IoT-based fall detection system can improve the quality of life among older adults. Along with the physical concerns of health, psychological stress is also a great concern among older adults. Stress has been linked to emotional and physical conditions such as depression, anxiety, heart attacks, stroke, etc. Increased susceptibility to stress may accelerate cognitive decline resulting in conversion of cognitively normal older adults to MCI (Mild Cognitive Impairment), and MCI to dementia. Thus, if stress can be measured, there can be countermeasures put in place to reduce stress and its negative effects on the psychological and physical health of older adults. This thesis presents a framework that can be used to collect and pre-process physiological data for the purpose of validating galvanic skin response (GSR), heart rate (HR), and emotional valence (EV) measurements against the cortisol and self-reporting benchmarks for stress detection. The results of this framework can be used for feature extraction to feed into a regression model for validating each combination of physiological measurement. Also, the potential of this framework to automate stress protocols like the Trier Social Stress Test (TSST) could pave the way for an IoT-based platform for automated stress detection and management

    Observer’s Galvanic Skin Response for Discriminating Real from Fake Smiles

    Get PDF
    This paper demonstrates a system to discriminate real from fake smiles with high accuracy by sensing observers’ galvanic skin response (GSR). GSR signals are recorded from 10 observers, while they are watching 5 real and 5 posed or acted smile video stimuli. We investigate the effect of various feature selection methods on processed GSR signals (recorded features) and computed features (extracted features) from the processed GSR signals, by measuring classification performance using three different classifiers. A leave-one-observer-out process is implemented to reliably measure classification accuracy. It is found that simple neural network (NN) using random subset feature selection (RSFS) based on extracted features outperforms all other cases, with 96.5% classification accuracy on our two classes of smiles (real vs. fake). The high accuracy highlights the potential of this system for use in the future for discriminating observers’ reactions to authentic emotional stimuli in settings such as advertising and tutoring systems

    Classification of Physiological Signals for Emotion Recognition using IoT

    Get PDF
    Emotion recognition gains huge popularity now a days. Physiological signals provides an appropriate way to detect human emotion with the help of IoT. In this paper, a novel system is proposed which is capable of determining the emotional status using physiological parameters, including design specification and software implementation of the system. This system may have a vivid use in medicine (especially for emotionally challenged people), smart home etc. Various Physiological parameters to be measured includes, heart rate (HR), galvanic skin response (GSR), skin temperature etc. To construct the proposed system the measured physiological parameters were feed to the neural networks which further classify the data in various emotional states, mainly in anger, happy, sad, joy. This work recognized the correlation between human emotions and change in physiological parameters with respect to their emotion

    A wearable system for stress detection through physiological data analysis

    Get PDF
    In the last years the impact of stress on the society has been increased, resulting in 77% of people that regularly experiences physical symptoms caused by stress with a negative impact on their personal and professional life, especially in aging working population. This paper aims to demonstrate the feasibility of detection and monitoring of stress, inducted by mental stress tests, through the analysis of physiological data collected by wearable sensors. In fact, the physiological features extracted from heart rate variability and galvanic skin response showed significant differences between stressed and not stressed people. Starting from the physiological data, the work provides also a cluster analysis based on Principal Components (PCs) able to showed a visual discrimination of stressed and relaxed groups. The developed system would support active ageing, monitoring and managing the level of stress in ageing workers and allowing them to reduce the burden of stress related to the workload on the basis of personalized interventions

    Psychophysiology in games

    Get PDF
    Psychophysiology is the study of the relationship between psychology and its physiological manifestations. That relationship is of particular importance for both game design and ultimately gameplaying. Players’ psychophysiology offers a gateway towards a better understanding of playing behavior and experience. That knowledge can, in turn, be beneficial for the player as it allows designers to make better games for them; either explicitly by altering the game during play or implicitly during the game design process. This chapter argues for the importance of physiology for the investigation of player affect in games, reviews the current state of the art in sensor technology and outlines the key phases for the application of psychophysiology in games.The work is supported, in part, by the EU-funded FP7 ICT iLearnRWproject (project no: 318803).peer-reviewe
    corecore