1,328 research outputs found

    Software for evaluating probability-based integrity of reinforced concrete structures

    Get PDF
    In recent years, much research work has been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environment. In particular, the development of new procedures for probability-based durability design has proved to give a more realistic basis for the analysis. Although there is still a lack of relevant data, this approach has been successfully applied to several new concrete structures, where requirements to a more controlled durability and service life have been specified. A probability-based durability analysis has also become an important and integral part of condition assessment of existing concrete structures in chloride containing environment. In order to facilitate the probability-based durability analysis, a software named DURACON has been developed, where the probabilistic approach is based on a Monte Carlo simulation. In the present paper, the software for the probability-based durability analysis is briefly described and used in order to demonstrate the importance of the various durability parameters affecting the durability of concrete structures in chloride containing environment

    Anti-plane Shear of Cylinders and Layered Systems: Cohesive Fracture and Instability

    Get PDF
    This research examines the mechanics of mode-III cohesive fracture by defect initiation and quasi-static growth in both cylinder and layered systems. The analysis, which is exact, is based on the solution of two fundamental elasticity problems: i) a cylinder subject to an arbitrary shear on one end cap and an equilibrating torque on the other and, ii) a layer subject to arbitrary anti-plane shear traction on one surface and an equilibrating uniform traction on the other. For a particular geometry and defect configuration, these solutions are shown to lead to a pair of interfacial integral equations whose derived cohesive surface fields capture the entire defect evolution process from incipient growth through complete failure. The anti-plane shear separation/slip process is assumed to be modeled by Needleman-type traction-separation relations (e.g., bilinear, Xu-Needleman, frictional) characterized by a shear cohesive strength, a characteristic force length and, in the case of the bilinear law, a finite decohesion cutoff length and possibly other parameters as well. Symmetrically arrayed cohesive surface defects are modeled by a cohesive surface strength function which varies with surface coordinate. Infinitesimal strain equilibrium solutions, which allow for rigid body movement, are found by eigenfunction approximation of the solution of the governing interfacial integral equations. General features of the solutions to anti-plane shear cohesive fracture in both cylindrical and layered geometries indicate that quasi-static defect initiation and propagation occur under monotonically increasing load. For small values of characteristic force length, brittle behavior occurs that is readily identifiable with the growth of a sharp crack, i.e., the existence of a strong local stress concentration. At larger values of characteristic force length, ductile response occurs which is more typical of a linear “spring” cohesive surface, i.e., more distributed stress and slip distribution. Both behaviors ultimately give rise to abrupt failure of the cohesive surface. Results for the stiff, strong cohesive surface under a small applied load show consistency with static linear elastic fracture mechanics solutions in the literature. By superimposing a frictional part onto the cohesive law, the solution can be used to predict frictional response. Both decohesion and friction dominated cases show similar quasi-static defect propagation process, stable defect growth till a maximum load is reached, then defect growth becomes dynamic and unstable. However, the difference lies in that the friction dominated cohesive surface can still sustain certain load even after response becomes dynamic, but the decohesion dominated case will not. For friction dominated cohesive surfaces, the cylinder cases have smooth deformation processes whereas the layered systems experience a noticeable displacement jump. Both cylinder and layered systems predict the principal plane (perpendicular to principal stress direction) to be close to 45 degrees which helps to explain the orientation of mode-I microcracks in layered systems and the initiation of a spiral crack plane in cylinder geometries. The cohesive fracture solution to layered geometries can be extended to obtaining traction fields for more complicated defect geometries (array of cracks and subsurface cracks in nonuniform bilayer) which can be used to predict the sequence of defect propagation. The bifurcation analysis of the uniform two-sublayer system shows the phenomenon of non-unique slip for the same loading. The bifurcation analysis for the multi-sublayer system with such non-uniqueness gives an explanation of the asymmetric configuration. For the analysis of nonuniform multi-sublayer systems, no additional difficulty occurs in the problem-solving process. By studying different geometries and crack patterns, the current study discussed the combined effects of interlaminar and intralaminar crack interaction which are important in predicting the most vulnerable place in the system while multiple defects exist

    Multifield-based modeling of material failure in high performance reinforced cementitious composites

    Get PDF
    Cementitious materials such as mortar or concrete are brittle and have an inherent weakness in resisting tensile stresses. The addition of discontinuous fibers to such matrices leads to a dramatic improvement in their toughness and remedies their deficiencies. It is generally agreed that the fibers contribute primarily to the post-cracking response of the composite by bridging the cracks and providing resistance to crack opening. On the other hand, the multifield theory is a mathematical tool able to describe materials which contain a complex substructure. This substructure is endowed with its own properties and it interacts with the macrostructure and influences drastically its behavior. Under this mathematical framework, materials such as cement composites can be seen as a continuum with a microstructure. Therefore, the whole continuum damage mechanics theory, incorporating a new microstructure, is still applicable. A formulation, initially based on the theory of continua with microstructure Capriz, has been developed to model the mechanical behavior of the high perfor-mance fiber cement composites with arbitrarily oriented fibers. This formulation approaches a continuum with microstructure, in which the microstructure takes into account the fiber-matrix interface bond/slip processes, which have been recognized for several authors as the principal mechanism increasing the ductility of the quasi-brittle cement response. In fact, the interfaces between the fiber and the matrix become a limiting factor in improving mechanical properties such as the tensile strength. Particularly, in short fiber composites is desired to have a strong interface to transfer effectively load from the matrix to the fiber. However, a strong interface will make difficult to relieve fiber stress concentration in front of the approaching crack. According to Naaman, in order to develop a better mechanical bond between the fiber and the matrix, the fiber should be modified along its length by roughening its surface or by inducing mechanical defor-mations. Thus, the premise of the model is to take into account this process considering a micro field that represents the slipping fiber-cement displacement. The conjugate generalized stress to the gradient of this micro-field verifies a balance equation and has a physical meaning. This contribution includes the computational modeling aspects of the high fiber rein-forced cement composites (HFRCC) model. To simulate the composite material, a finite element discretization is used to solve the set of equations given by the multifield approach for this particular case. A two field discretization: the standard macroscopic and the micro-scopic displacements, is proposed through a mixed finite element methodology. Furthermore, a splitting procedure for uncoupling both fields is proposed, which provides a more convenient numerical treatment of the discrete equation system. The initiation of failure in HPFRCC at the constitutive level identified as the onset of strain localization depends on the mechanical properties of the all compounds and not only on the matrix ones. As localization criteria is considered the bifurcation analysis in combination with the localized strain injection technique presented by Oliver et al. It consists of injecting a specific localization mode during the localization stage, via mixed finite element formulations, to the path of elements that are going to capture the cracks, and, in this way, the spurious mesh orientation dependence is removed. Model validation was performed using a selected set of experiments that proves the via-bility of this approach. The numerical examples of the proposed formulation illustrated two relevant aspects, namely: 1) the role of the bonding mechanism in the strain hardening be-havior after cracking in the HPFRCC and 2) the role that plays the finite element formulation in capturing the displacement localization in the localization stage

    Cohesive zone model for facesheet -core interface delamination in honeycomb FRP sandwich panels

    Get PDF
    The focus of this dissertation is on developing efficient modeling techniques to study facesheet-core interface delamination in honeycomb fiber-reinforced polymer (HFRP) sandwich panels. Delamination problems are usually treated from a fracture mechanics point of view. However, interface delamination is generally very complex in nature and difficult to solve, because it involves not only geometric and material discontinuities, but also the inherently coupled Mode I, II and III fracture in layered material systems attributed to the well-known oscillatory singularity nature of the stress and displacement field in the vicinity of the delamination crack tip. One of the key issues in this research is to determine the best way to characterize interface delamination within the framework of continuum mechanics rather than using ad hoc methods just to facilitate numerical implementations, such as springs across a crack in the finite element method.;The usual requirement of defining an initial crack and assuming self-similar progression of a crack, make traditional fracture mechanics approaches inefficient for modeling interface delamination. To circumvent these difficulties, five most relevant nonlinear crack models are reviewed and compared. It is concluded that by unifying strength-based crack initiation and fracture-based crack progression, the cohesive crack modeling approach has distinct advantages compared to other global methods.;In this study, a cohesive zone model (CZM) with linear-exponential irreversible softening traction-separation law, satisfying empirical mixed-mode fracture criteria, is proposed to represent progressive damage occurring within the interface during the fracture process. The CZM is implemented as a cohesive interface element through a user-defined element subroutine within the general purpose finite element code ABAQUS. The framework and formulation of a three dimensional interface element are presented. Two sets of parameters are required for application of the developed interface element, namely, interfacial strength and fracture toughness. (Abstract shortened by UMI.)

    Multified-based modeling of material failure in high performance reinforced cementitious composites

    Get PDF
    Cementitious materials such as mortar or concrete are brittle and have an inherent weakness in resisting tensile stresses. The addition of discontinuous fibers to such matrices leads to a dramatic improvement in their toughness and remedies their deficiencies. It is generally agreed that the fibers contribute primarily to the post-cracking response of the composite by bridging the cracks and providing resistance to crack opening (Suwaka & Fukuyama 2006). On the other hand, the multifield theory is a mathematical tool able to describe materials which contain a complex substructure (Mariano & Stazi 2005). This substructure is endowed with its own properties and it interacts with the macrostructure and influences drastically its behavior. Under this mathematical framework, materials such as cement composites can be seen as a continuum with a microstructure. Therefore, the whole continuum damage mechanics theory, incorporating a new microstructure, is still applicable. A formulation, initially based on the theory of continua with microstructure Capriz (Capriz 1989), has been developed to model the mechanical behavior of the high performance fiber cement composites with arbitrarily oriented fibers. This formulation approaches a continuum with microstructure, in which the microstructure takes into account the fibermatrix interface bond/slip processes, which have been recognized for several authors (Li 2003, Naaman 2007b) as the principal mechanism increasing the ductility of the quasi-brittle cement response. In fact, the interfaces between the fiber and the matrix become a limiting factor in improving mechanical properties such as the tensile strength. Particularly, in short fiber composites is desired to have a strong interface to transfer effectively load from the matrix to the fiber. However, a strong interface will make difficult to relieve fiber stress concentration in front of the approaching crack. According to Naaman (Naaman 2003), in order to develop a better mechanical bond between the fiber and the matrix, the fiber should be modified along its length by roughening its surface or by inducing mechanical deformations. Thus, the premise of the model is to take into account this process considering a microfield that represents the slipping fiber-cement displacement. The conjugate generalized stress to the gradient of this micro-field verifies a balance equation and has a physical meaning. This contribution includes the computational modeling aspects of the high fiber reinforced cement composites (HFRCC) model. To simulate the composite material, a finite element discretization is used to solve the set of equations given by the multifield approach for this particular case. A two field discretization: the standard macroscopic and the microscopic displacements, is proposed through a mixed finite element methodology. Furthermore, a splitting procedure for uncoupling both fields is proposed, which provides a more convenient numerical treatment of the discrete equation system. The initiation of failure in HPFRCC at the constitutive level identified as the onset of strain localization depends on the mechanical properties of the all compounds and not only on the matrix ones. As localization criteria is considered the bifurcation analysis in combination with the localized strain injection technique presented by Oliver et al. (Oliver et al. 2010a). It consists of injecting a specific localization mode during the localization stage, via mixed finite element formulations, to the path of elements that are going to capture the cracks, and, in this way, the spurious mesh orientation dependence is removed. Model validation was performed using a selected set of experiments that proves the viability of this approach. The numerical examples of the proposed formulation illustrated two relevant aspects, namely: 1) the role of the bonding mechanism in the strain hardening behavior after cracking in the HPFRCC and 2) the role that plays the finite element formulation in capturing the displacement localization in the localization stage

    Defect types.

    Get PDF
    This chapter provides an overview of the common types of defects found in various structural materials and joints in aircraft. Materials manufacturing methods (including large-scale production) have been established in the aircraft industry. However, as will be seen in this chapter, manufacturing defects and defects during in-service conditions are very common across all material types. The structural material types include metals, composites, coatings, adhesively bonded and stir-welded joints. This chapter describes the defect types as a baseline for the description of their detection with the methods of Chap. 5 to 8. Based on the understanding of the defect types, there is great expectation for a technical breakthrough for the application of structural health monitoring (SHM) damage detection systems, where continuous monitoring and assessment with high throughput and yield will produce the desired structural integrity

    Multifunctional composite interphase

    Get PDF
    In this work, carbon nanotubes were deposited onto the insulative glass fibre surface to form a semiconductive network. Utilizing the unique properties of CNTs network, a multifunctional composite interphase could be achieved. The interfacial adhesion strength was improved by CNTs distributed in the interphase. The semiconductive interphase have been used as a chemical/phaysical sensor, strain sensor and microswitch

    A statistical approach for fracture property realization and macroscopic failure analysis of brittle materials

    Get PDF
    Lacking the energy dissipative mechanics such as plastic deformation to rebalance localized stresses, similar to their ductile counterparts, brittle material fracture mechanics is associated with catastrophic failure of purely brittle and quasi-brittle materials at immeasurable and measurable deformation scales respectively. This failure, in the form macroscale sharp cracks, is highly dependent on the composition of the material microstructure. Further, the complexity of this relationship and the resulting crack patterns is exacerbated under highly dynamic loading conditions. A robust brittle material model must account for the multiscale inhomogeneity as well as the probabilistic distribution of the constituents which cause material heterogeneity and influence the complex mechanisms of dynamic fracture responses of the material. Continuum-based homogenization is carried out via finite element-based micromechanical analysis of a material neighbor which gives is geometrically described as a sampling windows (i.e., statistical volume elements). These volume elements are well-defined such that they are representative of the material while propagating material randomness from the inherent microscale defects. Homogenization yields spatially defined elastic and fracture related effective properties, utilized to statistically characterize the material in terms of these properties. This spatial characterization is made possible by performing homogenization at prescribed spatial locations which collectively comprise a non-uniform spatial grid which allows the mapping of each effective material properties to an associated spatial location. Through stochastic decomposition of the derived empirical covariance of the sampled effective material property, the Karhunen-Loeve method is used to generate realizations of a continuous and spatially-correlated random field approximation that preserve the statistics of the material from which it is derived. Aspects of modeling both isotropic and anisotropic brittle materials, from a statistical viewpoint, are investigated to determine how each influences the macroscale fracture response of these materials under highly dynamic conditions. The effects of modeling a material both explicitly by representations of discrete multiscale constituents and/or implicitly by continuum representation of material properties is studies to determine how each model influences the resulting material fracture response. For the implicit material representations, both a statistical white noise (i.e., Weibull-based spatially-uncorrelated) and colored noise (i.e., Karhunen-Loeve spatially-correlated model) random fields are employed herein

    Thermal stress analysis of unidirectional fiber reinforced composites

    Get PDF
    Composite materials are widely used in temperature fluctuating environments, which make these materials highly prone to cracking. The cracking phenomenon is a result of high thermal stresses that are generated by the mismatch in properties of the composite constituents, particularly the mismatch in the thermal expansion coefficient. The main objective of this study is to understand the micromechanics of such a phenomenon. The problem has been investigated using the finite element method (FEM). The analyses were performed utilizing 3-D prism and axisymmetric models. Hexagonal fiber packing of unidirectional composites was considered. The dimensions of the models were assumed such that the models could provide sufficient information on the behavior near the free surface as well as the interior of fiber composites. Properties of the constituents were considered to be temperature dependent. The elasto-plastic and visco-elastic characteristics of the materials were also included. The transient thermal analysis of the models showed that, for most practical applications, the temperature gradient in the composite constituents has minor effects on the stresses generated. Therefore, several stress analyses were performed assuming a uniformly changing temperature throughout the composite. The elastic analysis of thermal stresses and deformations showed high radial and hoop stress concentrations occurring at the fiber end on the free surface. This is contrary to the shear-lag theorem, which assumes that these stress components are negligible. An overlapping hypothesis, based on the deformation of the fiber and matrix, is proposed to explain such high radial and hoop stresses. Using regular FEM elements, it was concluded that the stresses are singular in nature. The stress singularity was numerically investigated and found to be of the type r -á with á being dependent on the material properties but having a value close to 1/3. The elasto-visco-plastic behavior of composites was also analyzed. Large plastic strains were localized at the fiber end even for a small temperature change. Creep effects that were significant at elevated temperatures brought about some stress relaxation during the manufacturing process. Thermally induced stress concentration in composites can be controlled, to some extent, by changing the geometry of the free surface. The analysis of such effects indicated that reduction of the contact angle between the fiber and the matrix on the fire surface reduced the high radial and hoop stress magnitudes. Also, the influence of covering the free surface of the composite with a thin layer of matrix-like material was studied. The magnitudes of the radial and hoop stress components were substantially reduced. The case when the cover and the composite are made in separate stages (two-stage covering), was also studied. Based on the analysis, effective and practical ways of applying the cover are recommended. To verify the effects of the covering process, experiments were conducted on large-scale laboratory-made composite samples. The samples with the free surface covered with a thin layer of matrix-like material showed no trace of cracking or fiber/matrix debonding even after 1000 thermal cycles. On the other hand, in the samples without cover, exposed to identical thermal cycling, numerous matrix cracks and extensive fiber/matrix debonding were observed
    corecore