7,542 research outputs found

    Common Sense or World Knowledge? Investigating Adapter-Based Knowledge Injection into Pretrained Transformers

    Full text link
    Following the major success of neural language models (LMs) such as BERT or GPT-2 on a variety of language understanding tasks, recent work focused on injecting (structured) knowledge from external resources into these models. While on the one hand, joint pretraining (i.e., training from scratch, adding objectives based on external knowledge to the primary LM objective) may be prohibitively computationally expensive, post-hoc fine-tuning on external knowledge, on the other hand, may lead to the catastrophic forgetting of distributional knowledge. In this work, we investigate models for complementing the distributional knowledge of BERT with conceptual knowledge from ConceptNet and its corresponding Open Mind Common Sense (OMCS) corpus, respectively, using adapter training. While overall results on the GLUE benchmark paint an inconclusive picture, a deeper analysis reveals that our adapter-based models substantially outperform BERT (up to 15-20 performance points) on inference tasks that require the type of conceptual knowledge explicitly present in ConceptNet and OMCS

    Memory-Efficient Adaptive Optimization

    Full text link
    Adaptive gradient-based optimizers such as Adagrad and Adam are crucial for achieving state-of-the-art performance in machine translation and language modeling. However, these methods maintain second-order statistics for each parameter, thus introducing significant memory overheads that restrict the size of the model being used as well as the number of examples in a mini-batch. We describe an effective and flexible adaptive optimization method with greatly reduced memory overhead. Our method retains the benefits of per-parameter adaptivity while allowing significantly larger models and batch sizes. We give convergence guarantees for our method, and demonstrate its effectiveness in training very large translation and language models with up to 2-fold speedups compared to the state-of-the-art

    Retrospective Reader for Machine Reading Comprehension

    Full text link
    Machine reading comprehension (MRC) is an AI challenge that requires machine to determine the correct answers to questions based on a given passage. MRC systems must not only answer question when necessary but also distinguish when no answer is available according to the given passage and then tactfully abstain from answering. When unanswerable questions are involved in the MRC task, an essential verification module called verifier is especially required in addition to the encoder, though the latest practice on MRC modeling still most benefits from adopting well pre-trained language models as the encoder block by only focusing on the "reading". This paper devotes itself to exploring better verifier design for the MRC task with unanswerable questions. Inspired by how humans solve reading comprehension questions, we proposed a retrospective reader (Retro-Reader) that integrates two stages of reading and verification strategies: 1) sketchy reading that briefly investigates the overall interactions of passage and question, and yield an initial judgment; 2) intensive reading that verifies the answer and gives the final prediction. The proposed reader is evaluated on two benchmark MRC challenge datasets SQuAD2.0 and NewsQA, achieving new state-of-the-art results. Significance tests show that our model is significantly better than the strong ELECTRA and ALBERT baselines. A series of analysis is also conducted to interpret the effectiveness of the proposed reader.Comment: Accepted by AAAI 202
    corecore