12,578 research outputs found

    Security of discrete log cryptosystems in the random oracle and the generic model

    Get PDF
    We introduce novel security proofs that use combinatorial counting arguments rather than reductions to the discrete logarithm or to the Diffie-Hellman problem. Our security results are sharp and clean with no polynomial reduction times involved. We consider a combination of the random oracle model and the generic model. This corresponds to assuming an ideal hash function H given by an oracle and an ideal group of prime order q, where the binary encoding of the group elements is useless for cryptographic attacks In this model, we first show that Schnorr signatures are secure against the one-more signature forgery : A generic adversary performing t generic steps including l sequential interactions with the signer cannot produce l+1 signatures with a better probability than (t 2)/q. We also characterize the different power of sequential and of parallel attacks. Secondly, we prove signed ElGamal encryption is secure against the adaptive chosen ciphertext attack, in which an attacker can arbitrarily use a decryption oracle except for the challenge ciphertext. Moreover, signed ElGamal encryption is secure against the one-more decryption attack: A generic adversary performing t generic steps including l interactions with the decryption oracle cannot distinguish the plaintexts of l + 1 ciphertexts from random strings with a probability exceeding (t 2)/q

    Quantum Tokens for Digital Signatures

    Get PDF
    The fisherman caught a quantum fish. "Fisherman, please let me go", begged the fish, "and I will grant you three wishes". The fisherman agreed. The fish gave the fisherman a quantum computer, three quantum signing tokens and his classical public key. The fish explained: "to sign your three wishes, use the tokenized signature scheme on this quantum computer, then show your valid signature to the king, who owes me a favor". The fisherman used one of the signing tokens to sign the document "give me a castle!" and rushed to the palace. The king executed the classical verification algorithm using the fish's public key, and since it was valid, the king complied. The fisherman's wife wanted to sign ten wishes using their two remaining signing tokens. The fisherman did not want to cheat, and secretly sailed to meet the fish. "Fish, my wife wants to sign ten more wishes". But the fish was not worried: "I have learned quantum cryptography following the previous story (The Fisherman and His Wife by the brothers Grimm). The quantum tokens are consumed during the signing. Your polynomial wife cannot even sign four wishes using the three signing tokens I gave you". "How does it work?" wondered the fisherman. "Have you heard of quantum money? These are quantum states which can be easily verified but are hard to copy. This tokenized quantum signature scheme extends Aaronson and Christiano's quantum money scheme, which is why the signing tokens cannot be copied". "Does your scheme have additional fancy properties?" the fisherman asked. "Yes, the scheme has other security guarantees: revocability, testability and everlasting security. Furthermore, if you're at sea and your quantum phone has only classical reception, you can use this scheme to transfer the value of the quantum money to shore", said the fish, and swam away.Comment: Added illustration of the abstract to the ancillary file

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    A fair payment system with online anonymous transfer

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.Includes bibliographical references (p. 26-27).Physical cash can be anonymously transfered. Transferability is a desirable property because it allows for flexible, private commerce where neither the seller nor the buyer must identify themselves to the bank. In some cases, however, anonymity can be abused and lead to problems such as blackmail and money laundering. In 1996, Camenisch, Piveteau, and Stadler introduced the concept of fairness for (non-transferable) ECash, where a trusted authority can revoke the anonymity of certain transactions as needed. To our knowledge, no current ECash system supports both anonymous transfer and fairness. We have designed and implemented such a system. Also, we formally describe a set of desirable properties for ECash systems and prove that our system meets all of these properties under the Strong RSA assumption and the Decisional Diffie-Hellman assumption in the random oracle model. Furthermore, we provide extensions for our system that could allow it to deal with offline payments and micropayments. Our system has been implemented in java. Tests have shown that it performs and scales well, as expected.by Bin D. Vo.M.Eng

    Real-world Cryptanalysis

    Get PDF

    Further discussions on the security of a nominative signature scheme

    Get PDF
    A nominative signature scheme allows a nominator (or signer) and a nominee (or veri¯er) to jointly generate and publish a signature in such a way that only the nominee can verify the signature and if nec- essary, only the nominee can prove to a third party that the signature is valid. In a recent work, Huang and Wang proposed a new nominative signature scheme which, in addition to the above properties, only allows the nominee to convert a nominative signature to a publicly veri¯able one. In ACISP 2005, Susilo and Mu presented several algorithms and claimed that these algorithms can be used by the nominator to verify the validity of a published nominative signature, show to a third party that the signature is valid, and also convert the signature to a publicly veri¯able one, all without any help from the nominee. In this paper, we point out that Susilo and Mu\u27s attacks are actually incomplete and in- accurate. In particular, we show that there exists no e±cient algorithm for a nominator to check the validity of a signature if this signature is generated by the nominator and the nominee honestly and the Decisional Di±e-Hellman Problem is hard. On the other hand, we point out that the Huang-Wang scheme is indeed insecure, since there is an attack that allows the nominator to generate valid nominative signatures alone and prove the validity of such signatures to a third party

    Variants of Group Signatures and Their Applications

    Get PDF

    Classical Homomorphic Encryption for Quantum Circuits

    Get PDF
    We present the first leveled fully homomorphic encryption scheme for quantum circuits with classical keys. The scheme allows a classical client to blindly delegate a quantum computation to a quantum server: an honest server is able to run the computation while a malicious server is unable to learn any information about the computation. We show that it is possible to construct such a scheme directly from a quantum secure classical homomorphic encryption scheme with certain properties. Finally, we show that a classical homomorphic encryption scheme with the required properties can be constructed from the learning with errors problem
    corecore