787 research outputs found

    BOUNDARY LAYER ON FLAT PLATE WITH LEADING EDGE PATTERNS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    Get PDF
    Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap. Graphical Abstract: [Figure not available: see fulltext.

    The flow structure behind vortex generators embedded in a decelerating turbulent boundary layer

    Get PDF
    The objective of the present work is to analyse the behaviour of a turbulent decelerating boundary layer under the effect of both passive and active jets vortex generators (VGs). The stereo PIV database of Godard and Stanislas [1, 2] obtained in an adverse pressure gradient boundary layer is used for this study. After presenting the effect on the mean velocity field and the turbulent kinetic energy, the line of analysis is extended with two points spatial correlations and vortex detection in instantaneous velocity fields. It is shown that the actuators concentrate the boundary layer turbulence in the region of upward motion of the flow, and segregate the near-wall streamwise vortices of the boundary layer based on their vorticity sign

    Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges

    Get PDF
    This paper presents the preliminary results on the aeroacoustic and aerodynamic performances of a NACA65-(12)10 aerofoil subjected to 12 sinusoidal leading edges. The serration patterns of these leading edges are formed by cutting into the main body of the aerofoil, instead of extending the leading edges. Any of the leading edges, when attached to the main body of the aerofoil, will always result in the same overall chord length. The experiment was mainly performed in an aeroacoustic wind tunnel facility, although a separate aerodynamic type wind tunnel was also used for the force measurements. These sinusoidal leading edges were investigated for their effectiveness in suppressing the laminar instability tonal noise (trailing edge self-noise) and turbulence–leading edge interaction noise. The largest reduction in aerofoil noise tends to associate with the sinusoidal leading edge of the largest amplitude, and smallest wavelength. However, noticeable noise increase at high frequency is also observed for this combination of serration. In terms of the aerodynamic performance, increasing the serration wavelength tends to improve the stall angles, but the lift coefficient at the pre-stall regime is generally lower than that produced by the baseline leading edge. For a sinusoidal leading edge with large serration amplitude, the effect of the reduction in “lift-generating” surface is manifested in the significant reduction of the lift coefficients and lift curve slope. The sinusoidal leading edge that produces the best performance in the post-stall regime belongs to the largest wavelength and smallest amplitude, where the lift coefficients are shown to be better than the baseline leading edge. In conclusion, large amplitude and small wavelength is beneficial for noise reduction, whilst to maintain the aerodynamic lift a small amplitude and large wavelength is preferred

    PRE-SET COUNTER-ROTATING STREAMWISE VORTICES IN WAVY CHANNEL

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ANALYSIS OF FLOW STRUCTURES AROUND INCLINED BLUFF BODIES

    Get PDF
    This thesis uses numerical investigations to examine details of the turbulent flow past bluff bodies, in particular around various inclined flat plate configurations. The study consists of three phases: (1) flow past an infinitely long inclined flat plate, (2) flow past a finite length inclined flat plate near a wall and (3) flow past a stand-alone solar panel with support structure. In Phase 1, the development of three-dimensional fluid structures around an infinitely long inclined flat plate at Reynolds number of 1.57×105 is reported. The Detached Eddy Simulation (DES) is validated against well-established experimental data. The flow analysis in two-dimensional planes provides fundamental information about the spanwise and streamwise vortices that develop near the body and in its wake, but offers limited information on the formation and evolution of these vortices. Using the λ2-criterion to visualize the three-dimensional fluid structures, the interaction between the spanwise and streamwise vortical structures and the shear layers is discussed. It is found that the spanwise wavelength of the streamwise vortical structures lie in the range corresponding to the mode B instability reported in previous studies of wake transition. The effect of a wall on the flow structures around a finite length inclined flat plate at two proximities from the wall is investigated in Phase 2. In the mean analysis, it is found that the small clearance produces a wall-jet like flow in the gap which elongates the wake region, whereas a strong upwash is captured for the larger gap, reducing the length of the wake. Transient three-dimensional flow structures are captured using the λ2-criterion. The early stage development of the flow around the plate shows inverted hairpin-like vortices that generate a counter-rotating sheared vortex and a pair of vertical vortex tubes extending from the wall. This pair of vortex tubes is considered as the source of the meandering structures reported in the literature. At the later flow development stage, an asymmetric distorted flow for the smaller gap is observed, whereas there is a nearly symmetric wake pattern for the larger gap. Numerical investigation of flow past a stand-alone solar panel with a supporting post is conducted using DES in Phase 3. Two elevations of the solar panel are examined. Mean velocity profiles and two-dimensional mean vorticity contours do not illustrate significant changes in the flow patterns, except for relatively weak vortices that develop along the post. The transient three-dimensional analysis using the λ2-criterion captures four unique fluid structures around the body for the small gap case. On the other hand, the large gap case shows minimum influence from the post except for ligaments of vortex tubes that extend from the post. The same vortex structures also develop in the small gap case but are merged into the large scale vortices in the wake

    Heat Transfer and Pressure Drop in a Developing Channel Flow with Streamwise Vortices

    Get PDF
    Experiments to assess the heat transfer and pressure-drop effects of delta-wing vortex generators placed at the entrance of developing channel flows are reported in this study. The experimental geometry simulates common heat exchanger configurations and tests are conducted over a velocity range important to heating, air conditioning and refrigeration. An innovative liquid-crystal thermography technique is used to determine the local and average Nusselt numbers for an isoflux channel wall, and conventional methods are used to determine the Fanning friction factor. Vortex generators with aspect ratios of A = 2 and A = 4 are studied at attack angles of a. = 20?? to 45????. The results indicate that the streamwise vortices generated by a delta wing can enhance local Nusselt numbers by more than 200% in a developing channel flow. Under some conditions, the spatially average Nusselt number nearly doubled for a heat transfer area that was 37 to 63 times the wing area. The Fanning friction factor increased by a few percent to nearly 60%, depending on the Reynolds number.Air Conditioning and Refrigeration Project 4

    Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere

    Get PDF
    Computations carried out on the German Federal Top-Level Computer SuperMUC at LRZ Munich under the contract number pr84na.International audienceThe objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D/2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement

    Large Eddy Simulation and Analysis of Shear Flows in Complex Geometries

    Get PDF
    In the present work, large eddy simulation is used to numerically investigate two types of shear flows in complex geometries, (i) a novel momentum driven countercurrent shear flow in dump geometry and (ii) a film cooling flow (inclined jet in crossflow). Verification of subgrid scale model is done through comparisons with measurements for a turbulent flow over back step, present cases of counter current shear and film cooling flow. In the first part, a three dimensional stability analysis is conducted for countercurrent shear flow using Dynamic mode decomposition and spectral analysis. Kelvin-Helmholtz is identified as primary instability mechanism and observed as global mode at a specific parameter. Mechanism of global mode synchronization over distinct spatial location is studied. In the second part, the flow physics of film cooling flows is analysed. The origin, evolution of various coherent flow structures and their role in film cooling heat transfer is studied based on detailed flow visualization. Further, the contribution of coherent structures in film cooling heat transfer and mixing is studied through modal analysis. Low frequency modes are found to have large contribution in cooling surface adiabatic temperature fluctuation while high frequency modes play larger role in bulk mixing. Finally, a new contoured crater shape is developed and shown to have improved performance at shallow depth compared to earlier designs
    corecore