187 research outputs found

    Relational Future Captioning Model for Explaining Likely Collisions in Daily Tasks

    Full text link
    Domestic service robots that support daily tasks are a promising solution for elderly or disabled people. It is crucial for domestic service robots to explain the collision risk before they perform actions. In this paper, our aim is to generate a caption about a future event. We propose the Relational Future Captioning Model (RFCM), a crossmodal language generation model for the future captioning task. The RFCM has the Relational Self-Attention Encoder to extract the relationships between events more effectively than the conventional self-attention in transformers. We conducted comparison experiments, and the results show the RFCM outperforms a baseline method on two datasets.Comment: Accepted for presentation at ICIP202

    Unifying Event Detection and Captioning as Sequence Generation via Pre-Training

    Full text link
    Dense video captioning aims to generate corresponding text descriptions for a series of events in the untrimmed video, which can be divided into two sub-tasks, event detection and event captioning. Unlike previous works that tackle the two sub-tasks separately, recent works have focused on enhancing the inter-task association between the two sub-tasks. However, designing inter-task interactions for event detection and captioning is not trivial due to the large differences in their task specific solutions. Besides, previous event detection methods normally ignore temporal dependencies between events, leading to event redundancy or inconsistency problems. To tackle above the two defects, in this paper, we define event detection as a sequence generation task and propose a unified pre-training and fine-tuning framework to naturally enhance the inter-task association between event detection and captioning. Since the model predicts each event with previous events as context, the inter-dependency between events is fully exploited and thus our model can detect more diverse and consistent events in the video. Experiments on the ActivityNet dataset show that our model outperforms the state-of-the-art methods, and can be further boosted when pre-trained on extra large-scale video-text data. Code is available at \url{https://github.com/QiQAng/UEDVC}

    End-to-end Dense Video Captioning as Sequence Generation

    Full text link
    Dense video captioning aims to identify the events of interest in an input video, and generate descriptive captions for each event. Previous approaches usually follow a two-stage generative process, which first proposes a segment for each event, then renders a caption for each identified segment. Recent advances in large-scale sequence generation pretraining have seen great success in unifying task formulation for a great variety of tasks, but so far, more complex tasks such as dense video captioning are not able to fully utilize this powerful paradigm. In this work, we show how to model the two subtasks of dense video captioning jointly as one sequence generation task, and simultaneously predict the events and the corresponding descriptions. Experiments on YouCook2 and ViTT show encouraging results and indicate the feasibility of training complex tasks such as end-to-end dense video captioning integrated into large-scale pre-trained models
    • …
    corecore