911 research outputs found

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Design of Immersive Online Hotel Walkthrough System Using Image-Based (Concentric Mosaics) Rendering

    Get PDF
    Conventional hotel booking websites only represents their services in 2D photos to show their facilities. 2D photos are just static photos that cannot be move and rotate. Imagebased virtual walkthrough for the hospitality industry is a potential technology to attract more customers. In this project, a research will be carried out to create an Image-based rendering (IBR) virtual walkthrough and panoramic-based walkthrough by using only Macromedia Flash Professional 8, Photovista Panorama 3.0 and Reality Studio for the interaction of the images. The web-based of the image-based are using the Macromedia Dreamweaver Professional 8. The images will be displayed in Adobe Flash Player 8 or higher. In making image-based walkthrough, a concentric mosaic technique is used while image mosaicing technique is applied in panoramic-based walkthrough. A comparison of the both walkthrough is compared. The study is also focus on the comparison between number of pictures and smoothness of the walkthrough. There are advantages of using different techniques such as image-based walkthrough is a real time walkthrough since the user can walk around right, left, forward and backward whereas the panoramic-based cannot experience real time walkthrough because the user can only view 360 degrees from a fixed spot

    Sensing of complex buildings and reconstruction into photo-realistic 3D models

    Get PDF
    The 3D reconstruction of indoor and outdoor environments has received an interest only recently, as companies began to recognize that using reconstructed models is a way to generate revenue through location-based services and advertisements. A great amount of research has been done in the field of 3D reconstruction, and one of the latest and most promising applications is Kinect Fusion, which was developed by Microsoft Research. Its strong points are the real-time intuitive 3D reconstruction, interactive frame rate, the level of detail in the models, and the availability of the hardware and software for researchers and enthusiasts. A representative effort towards 3D reconstruction is the Point Cloud Library (PCL). PCL is a large scale, open project for 2D/3D image and point cloud processing. On December 2011, PCL made available an implementation of Kinect Fusion, namely KinFu. KinFu emulates the functionality provided in Kinect Fusion. However, both implementations have two major limitations: 1. The real-time reconstruction takes place only within a cube with a size of 3 meters per axis. The cube's position is fixed at the start of execution, and any object outside of this cube is not integrated into the reconstructed model. Therefore the volume that can be scanned is always limited by the size of the cube. It is possible to manually align many small-size cubes into a single large model, however this is a time-consuming and difficult task, especially when the meshes have complex topologies and high polygon count, as is the case with the meshes obtained from KinFu. 2. The output mesh does not have any color textures. There are some at-tempts to add color in the output point cloud; however, the resulting effect is not photo-realistic. Applying photo-realistic textures to a model can enhance the user experience, even when the model has a simple topology. The main goal of this project is to design and implement a system that captures large indoor environments and generates 3D photo-realistic large indoor models in real time. This report describes an extended version of the KinFu system. The extensions overcome the scalability and texture reconstruction limitations using commodity hardware and open-source software. The complete hardware setup used in this project is worth €2,000, which is comparable to the cost of a single professional laser scanner. The software is released under BSD license, which makes it completely free to use and commercialize. The system has been integrated into the open-source PCL project. The immediate benefits are three-fold: the system becomes a potential industry standard, it is maintained and extended by many developers around the world with no addition-al cost to the VCA group, and it can reduce the application development time by reusing numerous state-of-the-art algorithms
    • …
    corecore