647 research outputs found

    Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. We provide efficient constructions in both of these models, but our core results are for MPC. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use to construct distance sketches are an MPC construction of the hopsets of [Elkin and Neiman, 2016]. This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting

    Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams

    Get PDF
    While in many graph mining applications it is crucial to handle a stream of updates efficiently in terms of {\em both} time and space, not much was known about achieving such type of algorithm. In this paper we study this issue for a problem which lies at the core of many graph mining applications called {\em densest subgraph problem}. We develop an algorithm that achieves time- and space-efficiency for this problem simultaneously. It is one of the first of its kind for graph problems to the best of our knowledge. In a graph G=(V,E)G = (V, E), the "density" of a subgraph induced by a subset of nodes SVS \subseteq V is defined as E(S)/S|E(S)|/|S|, where E(S)E(S) is the set of edges in EE with both endpoints in SS. In the densest subgraph problem, the goal is to find a subset of nodes that maximizes the density of the corresponding induced subgraph. For any ϵ>0\epsilon>0, we present a dynamic algorithm that, with high probability, maintains a (4+ϵ)(4+\epsilon)-approximation to the densest subgraph problem under a sequence of edge insertions and deletions in a graph with nn nodes. It uses O~(n)\tilde O(n) space, and has an amortized update time of O~(1)\tilde O(1) and a query time of O~(1)\tilde O(1). Here, O~\tilde O hides a O(\poly\log_{1+\epsilon} n) term. The approximation ratio can be improved to (2+ϵ)(2+\epsilon) at the cost of increasing the query time to O~(n)\tilde O(n). It can be extended to a (2+ϵ)(2+\epsilon)-approximation sublinear-time algorithm and a distributed-streaming algorithm. Our algorithm is the first streaming algorithm that can maintain the densest subgraph in {\em one pass}. The previously best algorithm in this setting required O(logn)O(\log n) passes [Bahmani, Kumar and Vassilvitskii, VLDB'12]. The space required by our algorithm is tight up to a polylogarithmic factor.Comment: A preliminary version of this paper appeared in STOC 201

    Massively Parallel Algorithms for Distance Approximation and Spanners

    Full text link
    Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often poly(loglogn)poly(\log\log n)-time, or even faster -- for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(logk)poly(loglogn)poly(\log k) \in poly(\log\log n) round MPC algorithms for computing O(k1+o(1))O(k^{1+{o(1)}})-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(log2logn)O(\log^2\log n)-round algorithm for O(log1+o(1)n)O(\log^{1+o(1)} n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model

    Brief Announcement: Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation have been extensively studied both in centralized models and classical distributed models. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use is an MPC construction of the hopsets of Elkin and Neiman (2016). This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting
    corecore