1,046 research outputs found

    Mechanistic Logic Underlying the Axonal Transport of Cytosolic Proteins

    Get PDF
    SummaryProteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivatable GFP (PAGFP) move with a slow motor-dependent anterograde bias distinct from both vesicular trafficking and diffusion of untagged PAGFP. The overall bias is likely generated by an intricate particle kinetics involving transient assembly and short-range vectorial spurts. In vivo biochemical studies reveal that cytosolic proteins are organized into higher order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supramolecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multiprotein complexes that are directly/indirectly conveyed by motors

    Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy

    Get PDF
    Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced datasets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present thesis introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images.Comment: 218 pages, 58 figures, PhD thesis, Department of Mechanical Engineering, Karlsruhe Institute of Technology, published online with KITopen (License: CC BY-SA 3.0, http://dx.doi.org/10.5445/IR/1000057821

    Prediction of Visual Behaviour in Immersive Contents

    Get PDF
    In the world of broadcasting and streaming, multi-view video provides the ability to present multiple perspectives of the same video sequence, therefore providing to the viewer a sense of immersion in the real-world scene. It can be compared to VR and 360° video, still, there are significant differences, notably in the way that images are acquired: instead of placing the user at the center, presenting the scene around the user in a 360° circle, it uses multiple cameras placed in a 360° circle around the real-world scene of interest, capturing all of the possible perspectives of that scene. Additionally, in relation to VR, it uses natural video sequences and displays. One issue which plagues content streaming of all kinds is the bandwidth requirement which, particularly on VR and multi-view applications, translates into an increase of the required data transmission rate. A possible solution to lower the required bandwidth, would be to limit the number of views to be streamed fully, focusing on those surrounding the area at which the user is keeping his sight. This is proposed by SmoothMV, a multi-view system that uses a non-intrusive head tracking approach to enhance navigation and Quality of Experience (QoE) of the viewer. This system relies on a novel "Hot&Cold" matrix concept to translate head positioning data into viewing angle selections. The main goal of this dissertation focus on the transformation and storage of the data acquired using SmoothMV into datasets. These will be used as training data for a proposed Neural Network, fully integrated within SmoothMV, with the purpose of predicting the interest points on the screen of the users during the playback of multi-view content. The goal behind this effort is to predict possible viewing interests from the user in the near future and optimize bandwidth usage through buffering of adjacent views which could possibly be requested by the user. After concluding the development of this dataset, work in this dissertation will focus on the formulation of a solution to present generated heatmaps of the most viewed areas per video, previously captured using SmoothMV

    Using High-Order Prior Belief Predictions in Hierarchical Temporal Memory for Streaming Anomaly Detection

    Get PDF
    Autonomous streaming anomaly detection can have a significant impact in any domain where continuous, real-time data is common. Often in these domains, datasets are too large or complex to hand label. Algorithms that require expensive global training procedures and large training datasets impose strict demands on data and are accordingly not fit to scale to real-time applications that are noisy and dynamic. Unsupervised algorithms that learn continuously like humans therefore boast increased applicability to these real-world scenarios. Hierarchical Temporal Memory (HTM) is a biologically constrained theory of machine intelligence inspired by the structure, activity, organization and interaction of pyramidal neurons in the neocortex of the primate brain. At the core of HTM are spatio-temporal learning algorithms that store, learn, recall and predict temporal sequences in an unsupervised and continuous fashion to meet the demands of real-time tasks. Unlike traditional machine learning and deep learning encompassed by the act of complex functional approximation, HTM with the surrounding proposed framework does not require any offline training procedures, any massive stores of training data, any data labels, it does not catastrophically forget previously learned information and it need only make one pass through the temporal data. Proposed in this thesis is an algorithmic framework built upon HTM for intelligent streaming anomaly detection. Unseen in earlier streaming anomaly detection work, the proposed framework uses high-order prior belief predictions in time in the effort to increase the fault tolerance and complex temporal anomaly detection capabilities of the underlying time-series model. Experimental results suggest that the framework when built upon HTM redefines state-of-the-art performance in a popular streaming anomaly benchmark. Comparative results with and without the framework on several third-party datasets collected from real-world scenarios also show a clear performance benefit. In principle, the proposed framework can be applied to any time-series modeling algorithm capable of producing high-order predictions
    corecore