11 research outputs found

    Rumble: Data Independence for Large Messy Data Sets

    Full text link
    This paper introduces Rumble, an engine that executes JSONiq queries on large, heterogeneous and nested collections of JSON objects, leveraging the parallel capabilities of Spark so as to provide a high degree of data independence. The design is based on two key insights: (i) how to map JSONiq expressions to Spark transformations on RDDs and (ii) how to map JSONiq FLWOR clauses to Spark SQL on DataFrames. We have developed a working implementation of these mappings showing that JSONiq can efficiently run on Spark to query billions of objects into, at least, the TB range. The JSONiq code is concise in comparison to Spark's host languages while seamlessly supporting the nested, heterogeneous data sets that Spark SQL does not. The ability to process this kind of input, commonly found, is paramount for data cleaning and curation. The experimental analysis indicates that there is no excessive performance loss, occasionally even a gain, over Spark SQL for structured data, and a performance gain over PySpark. This demonstrates that a language such as JSONiq is a simple and viable approach to large-scale querying of denormalized, heterogeneous, arborescent data sets, in the same way as SQL can be leveraged for structured data sets. The results also illustrate that Codd's concept of data independence makes as much sense for heterogeneous, nested data sets as it does on highly structured tables.Comment: Preprint, 9 page

    Adaptive Management of Multimodel Data and Heterogeneous Workloads

    Get PDF
    Data management systems are facing a growing demand for a tighter integration of heterogeneous data from different applications and sources for both operational and analytical purposes in real-time. However, the vast diversification of the data management landscape has led to a situation where there is a trade-off between high operational performance and a tight integration of data. The difference between the growth of data volume and the growth of computational power demands a new approach for managing multimodel data and handling heterogeneous workloads. With PolyDBMS we present a novel class of database management systems, bridging the gap between multimodel database and polystore systems. This new kind of database system combines the operational capabilities of traditional database systems with the flexibility of polystore systems. This includes support for data modifications, transactions, and schema changes at runtime. With native support for multiple data models and query languages, a PolyDBMS presents a holistic solution for the management of heterogeneous data. This does not only enable a tight integration of data across different applications, it also allows a more efficient usage of resources. By leveraging and combining highly optimized database systems as storage and execution engines, this novel class of database system takes advantage of decades of database systems research and development. In this thesis, we present the conceptual foundations and models for building a PolyDBMS. This includes a holistic model for maintaining and querying multiple data models in one logical schema that enables cross-model queries. With the PolyAlgebra, we present a solution for representing queries based on one or multiple data models while preserving their semantics. Furthermore, we introduce a concept for the adaptive planning and decomposition of queries across heterogeneous database systems with different capabilities and features. The conceptual contributions presented in this thesis materialize in Polypheny-DB, the first implementation of a PolyDBMS. Supporting the relational, document, and labeled property graph data model, Polypheny-DB is a suitable solution for structured, semi-structured, and unstructured data. This is complemented by an extensive type system that includes support for binary large objects. With support for multiple query languages, industry standard query interfaces, and a rich set of domain-specific data stores and data sources, Polypheny-DB offers a flexibility unmatched by existing data management solutions

    Just-in-time Analytics Over Heterogeneous Data and Hardware

    Get PDF
    Industry and academia are continuously becoming more data-driven and data-intensive, relying on the analysis of a wide variety of datasets to gain insights. At the same time, data variety increases continuously across multiple axes. First, data comes in multiple formats, such as the binary tabular data of a DBMS, raw textual files, and domain-specific formats. Second, different datasets follow different data models, such as the relational and the hierarchical one. Data location also varies: Some datasets reside in a central "data lake", whereas others lie in remote data sources. In addition, users execute widely different analysis tasks over all these data types. Finally, the process of gathering and integrating diverse datasets introduces several inconsistencies and redundancies in the data, such as duplicate entries for the same real-world concept. In summary, heterogeneity significantly affects the way data analysis is performed. In this thesis, we aim for data virtualization: Abstracting data out of its original form and manipulating it regardless of the way it is stored or structured, without a performance penalty. To achieve data virtualization, we design and implement systems that i) mask heterogeneity through the use of heterogeneity-aware, high-level building blocks and ii) offer fast responses through on-demand adaptation techniques. Regarding the high-level building blocks, we use a query language and algebra to handle multiple collection types, such as relations and hierarchies, express transformations between these collection types, as well as express complex data cleaning tasks over them. In addition, we design a location-aware compiler and optimizer that masks away the complexity of accessing multiple remote data sources. Regarding on-demand adaptation, we present a design to produce a new system per query. The design uses customization mechanisms that trigger runtime code generation to mimic the system most appropriate to answer a query fast: Query operators are thus created based on the query workload and the underlying data models; the data access layer is created based on the underlying data formats. In addition, we exploit emerging hardware by customizing the system implementation based on the available heterogeneous processors â CPUs and GPGPUs. We thus pair each workload with its ideal processor type. The end result is a just-in-time database system that is specific to the query, data, workload, and hardware instance. This thesis redesigns the data management stack to natively cater for data heterogeneity and exploit hardware heterogeneity. Instead of centralizing all relevant datasets, converting them to a single representation, and loading them in a monolithic, static, suboptimal system, our design embraces heterogeneity. Overall, our design decouples the type of performed analysis from the original data layout; users can perform their analysis across data stores, data models, and data formats, but at the same time experience the performance offered by a custom system that has been built on demand to serve their specific use case

    Querying heterogeneous data in an in-situ unified agile system

    Get PDF
    Data integration provides a unified view of data by combining different data sources. In today’s multi-disciplinary and collaborative research environments, data is often produced and consumed by various means, multiple researchers operate on the data in different divisions to satisfy various research requirements, and using different query processors and analysis tools. This makes data integration a crucial component of any successful data intensive research activity. The fundamental difficulty is that data is heterogeneous not only in syntax, structure, and semantics, but also in the way it is accessed and queried. We introduce QUIS (QUery In-Situ), an agile query system equipped with a unified query language and a federated execution engine. It is capable of running queries on heterogeneous data sources in an in-situ manner. Its language provides advanced features such as virtual schemas, heterogeneous joins, and polymorphic result set representation. QUIS utilizes a federation of agents to transform a given input query written in its language to a (set of) computation models that are executable on the designated data sources. Federative query virtualization has the disadvantage that some aspects of a query may not be supported by the designated data sources. QUIS ensures that input queries are always fully satisfied. Therefore, if the target data sources do not fulfill all of the query requirements, QUIS detects the features that are lacking and complements them in a transparent manner. QUIS provides union and join capabilities over an unbound list of heterogeneous data sources; in addition, it offers solutions for heterogeneous query planning and optimization. In brief, QUIS is intended to mitigate data access heterogeneity through query virtualization, on-the-fly transformation, and federated execution. It offers in-Situ querying, agile querying, heterogeneous data source querying, unifeied execution, late-bound virtual schemas, and Remote execution

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Federated Query Processing over Heterogeneous Data Sources in a Semantic Data Lake

    Get PDF
    Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for citizens. Big Data plays an important role in promoting both manufacturing and scientific development through industrial digitization and emerging interdisciplinary research. Open data initiatives have encouraged the publication of Big Data by exploiting the decentralized nature of the Web, allowing for the availability of heterogeneous data generated and maintained by autonomous data providers. Consequently, the growing volume of data consumed by different applications raise the need for effective data integration approaches able to process a large volume of data that is represented in different format, schema and model, which may also include sensitive data, e.g., financial transactions, medical procedures, or personal data. Data Lakes are composed of heterogeneous data sources in their original format, that reduce the overhead of materialized data integration. Query processing over Data Lakes require the semantic description of data collected from heterogeneous data sources. A Data Lake with such semantic annotations is referred to as a Semantic Data Lake. Transforming Big Data into actionable knowledge demands novel and scalable techniques for enabling not only Big Data ingestion and curation to the Semantic Data Lake, but also for efficient large-scale semantic data integration, exploration, and discovery. Federated query processing techniques utilize source descriptions to find relevant data sources and find efficient execution plan that minimize the total execution time and maximize the completeness of answers. Existing federated query processing engines employ a coarse-grained description model where the semantics encoded in data sources are ignored. Such descriptions may lead to the erroneous selection of data sources for a query and unnecessary retrieval of data, affecting thus the performance of query processing engine. In this thesis, we address the problem of federated query processing against heterogeneous data sources in a Semantic Data Lake. First, we tackle the challenge of knowledge representation and propose a novel source description model, RDF Molecule Templates, that describe knowledge available in a Semantic Data Lake. RDF Molecule Templates (RDF-MTs) describes data sources in terms of an abstract description of entities belonging to the same semantic concept. Then, we propose a technique for data source selection and query decomposition, the MULDER approach, and query planning and optimization techniques, Ontario, that exploit the characteristics of heterogeneous data sources described using RDF-MTs and provide a uniform access to heterogeneous data sources. We then address the challenge of enforcing privacy and access control requirements imposed by data providers. We introduce a privacy-aware federated query technique, BOUNCER, able to enforce privacy and access control regulations during query processing over data sources in a Semantic Data Lake. In particular, BOUNCER exploits RDF-MTs based source descriptions in order to express privacy and access control policies as well as their automatic enforcement during source selection, query decomposition, and planning. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over data sources that not only contain the relevant entities to answer a query, but also are regulated by policies that allow for accessing these relevant entities. Finally, we tackle the problem of interest based update propagation and co-evolution of data sources. We present a novel approach for interest-based RDF update propagation that consistently maintains a full or partial replication of large datasets and deal with co-evolution

    Designing Data Spaces

    Get PDF
    This open access book provides a comprehensive view on data ecosystems and platform economics from methodical and technological foundations up to reports from practical implementations and applications in various industries. To this end, the book is structured in four parts: Part I “Foundations and Contexts” provides a general overview about building, running, and governing data spaces and an introduction to the IDS and GAIA-X projects. Part II “Data Space Technologies” subsequently details various implementation aspects of IDS and GAIA-X, including eg data usage control, the usage of blockchain technologies, or semantic data integration and interoperability. Next, Part III describes various “Use Cases and Data Ecosystems” from various application areas such as agriculture, healthcare, industry, energy, and mobility. Part IV eventually offers an overview of several “Solutions and Applications”, eg including products and experiences from companies like Google, SAP, Huawei, T-Systems, Innopay and many more. Overall, the book provides professionals in industry with an encompassing overview of the technological and economic aspects of data spaces, based on the International Data Spaces and Gaia-X initiatives. It presents implementations and business cases and gives an outlook to future developments. In doing so, it aims at proliferating the vision of a social data market economy based on data spaces which embrace trust and data sovereignty
    corecore