10 research outputs found

    Community-Based Intrusion Detection

    Get PDF
    Today, virtually every company world-wide is connected to the Internet. This wide-spread connectivity has given rise to sophisticated, targeted, Internet-based attacks. For example, between 2012 and 2013 security researchers counted an average of about 74 targeted attacks per day. These attacks are motivated by economical, financial, or political interests and commonly referred to as “Advanced Persistent Threat (APT)” attacks. Unfortunately, many of these attacks are successful and the adversaries manage to steal important data or disrupt vital services. Victims are preferably companies from vital industries, such as banks, defense contractors, or power plants. Given that these industries are well-protected, often employing a team of security specialists, the question is: How can these attacks be so successful? Researchers have identified several properties of APT attacks which make them so efficient. First, they are adaptable. This means that they can change the way they attack and the tools they use for this purpose at any given moment in time. Second, they conceal their actions and communication by using encryption, for example. This renders many defense systems useless as they assume complete access to the actual communication content. Third, their actions are stealthy — either by keeping communication to the bare minimum or by mimicking legitimate users. This makes them “fly below the radar” of defense systems which check for anomalous communication. And finally, with the goal to increase their impact or monetisation prospects, their attacks are targeted against several companies from the same industry. Since months can pass between the first attack, its detection, and comprehensive analysis, it is often too late to deploy appropriate counter-measures at businesses peers. Instead, it is much more likely that they have already been attacked successfully. This thesis tries to answer the question whether the last property (industry-wide attacks) can be used to detect such attacks. It presents the design, implementation and evaluation of a community-based intrusion detection system, capable of protecting businesses at industry-scale. The contributions of this thesis are as follows. First, it presents a novel algorithm for community detection which can detect an industry (e.g., energy, financial, or defense industries) in Internet communication. Second, it demonstrates the design, implementation, and evaluation of a distributed graph mining engine that is able to scale with the throughput of the input data while maintaining an end-to-end latency for updates in the range of a few milliseconds. Third, it illustrates the usage of this engine to detect APT attacks against industries by analyzing IP flow information from an Internet service provider. Finally, it introduces a detection algorithm- and input-agnostic intrusion detection engine which supports not only intrusion detection on IP flow but any other intrusion detection algorithm and data-source as well

    Incremental Stream Processing using Computational Conflict-free Replicated Data Types

    Get PDF
    International audienceInformation has become a key commodity for most service providers. Analyzing streams of data efficiently, in real time, has become increasingly more important for supporting new products and applications. This paper outlines a novel abstraction for performing incremental stream processing based on Computational Conflict-free Replicated Data Types. C-CRDTs are replicated objects that can be updated concurrently without co- ordination to perform a computation and still converge to a consistent state that reflects all contributions. Results obtained with a preliminary prototype show that C-CRDTs have the potential to match and improve computational throughput when compared with a state of the art stream processing system

    Risk of Slipping Industrial Landfills

    Get PDF
    Due to the high rate of industrialization, urbanization and development of the road network, hydrotechnical constructions, etc., larger areas of agricultural and arable lands are affected, some of these being removed from the economic circuit. Due to the magnitude of the involved volumes, industrial waste has lately become a threat to all the components of the environment. In Romania, 90–95% of the total quantity of the produced industrial waste are stored, but only 24% of them have an environmental clearance certificate. The action of the climatic factors increases the risk of the occurrence of some landslides, which leads to the deterioration of the ecosystems and the risk of pollution, the loss of stability, the destruction of some historical objectives. Thus, the risk analyses represent the support for the decision-making process in taking solid measures, meant to lead to the limitation and diminution of the danger of slipping and losing the stability of these deposits. However, the implementation of the measures is based on a systemic model, supported by the concept of risk. This chapter presents the definition and classification of environmental risks, the risk assessment methodology and a risk analysis for waste in a mining area in Romania

    Fakultät Informatik (2017) / Technische Universität Dresden

    Get PDF
    Informationen über die Fakultät Informatik der TU Dresden, Daten und Fakten sowie eine Auswahl aktueller Forschungsprojekte, 2017Information about the Faculty of Computer Science of the Technische Universität Dresden, data and facts and a selection of current research projects, 201

    Laufzeitadaption von zustandsbehafteten Datenstromoperatoren

    Get PDF
    Änderungen von Datenstromanfragen zur Laufzeit werden insbesondere durch zustandsbehaftete Datenstromoperatoren erschwert. Da die Zustände im Arbeitsspeicher abgelegt sind und bei einem Neustart verloren gehen, wurden in der Vergangenheit Migrationsverfahren entwickelt, um die inneren Operatorzustände bei einem Änderungsvorgang zu erhalten. Die Migrationsverfahren basieren auf zwei unterschiedlichen Ansätzen - Zustandstransfer und Parallelausführung - sind jedoch aufgrund ihrer Realisierung auf eine zentrale Ausführung beschränkt. Mit wachsenden Anforderungen in Bezug auf Datenmengen und Antwortzeiten werden Datenstromsysteme vermehrt verteilt ausgeführt, beispielsweise durch Sensornetze oder verteilte IT-Systeme. Zur Anpassung der Anfragen zur Laufzeit sind existierende Migrationsstrategien nicht oder nur bedingt geeignet. Diese Arbeit leistet einen Beitrag zur Lösung dieser Problematik und zur Optimierung der Migration in Datenstromsystemen. Am Beispiel von präventiven Instandhaltungsstrategien in Fabrikumgebungen werden Anforderungen für die Datenstromverarbeitung und insbesondere für die Migration abgeleitet. Das generelle Ziel ist demnach eine möglichst schnelle Migration bei gleichzeitiger Ergebnisausgabe. In einer detaillierten Analyse der existierenden Migrationsstrategien werden deren Stärken und Schwächen bezüglich der gestellten Anforderungen diskutiert. Für die Adaption von laufenden Datenstromanfragen wird eine allgemeine Methodik vorgestellt, welche als Basis für die neuen Strategien dient. Diese Adaptionsmethodik unterstützt zwei Verfahren zur Bestimmung von Migrationskonfigurationen - ein numerisches Verfahren für periodische Datenströme und ein heuristisches Verfahren, welches auch auf aperiodische Datenströme angewendet werden kann. Eine wesentliche Funktionalität zur Minimierung der Migrationsdauer ist dabei die Beschränkung auf notwendige Zustandswerte, da in verteilten Umgebungen eine Übertragungszeit für den Zustandstransfer veranschlagt werden muss - zwei Aspekte, die bei existierenden Verfahren nicht berücksichtigt werden. Durch die Verwendung von neu entwickelten Zustandstransfermethoden kann zudem die Übertragungsreihenfolge der einzelnen Zustandswerte beeinflusst werden. Die Konzepte wurden in einem OSGi-basierten Prototyp implementiert und zudem simulativ analysiert. Mit einer umfassenden Evaluierung wird die Funktionsfähigkeit aller Komponenten und Konzepte demonstriert. Der Performance-Vergleich zwischen den existierenden und den neuen Migrationsstrategien fällt deutlich zu Gunsten der neuen Strategien aus, die zudem in der Lage sind, alle Anforderungen zu erfüllen

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    Scalable and responsive real time event processing using cloud computing

    Get PDF
    PhD ThesisCloud computing provides the potential for scalability and adaptability in a cost e ective manner. However, when it comes to achieving scalability for real time applications response time cannot be high. Many applications require good performance and low response time, which need to be matched with the dynamic resource allocation. The real time processing requirements can also be characterized by unpredictable rates of incoming data streams and dynamic outbursts of data. This raises the issue of processing the data streams across multiple cloud computing nodes. This research analyzes possible methodologies to process the real time data in which applications can be structured as multiple event processing networks and be partitioned over the set of available cloud nodes. The approach is based on queuing theory principles to encompass the cloud computing. The transformation of the raw data into useful outputs occurs in various stages of processing networks which are distributed across the multiple computing nodes in a cloud. A set of valid options is created to understand the response time requirements for each application. Under a given valid set of conditions to meet the response time criteria, multiple instances of event processing networks are distributed in the cloud nodes. A generic methodology to scale-up and scale-down the event processing networks in accordance to the response time criteria is de ned. The real time applications that support sophisticated decision support mechanisms need to comply with response time criteria consisting of interdependent data ow paradigms making it harder to improve the performance. Consideration is given for ways to reduce the latency,improve response time and throughput of the real time applications by distributing the event processing networks in multiple computing nodes
    corecore