3,341 research outputs found

    Data semantic enrichment for complex event processing over IoT Data Streams

    Get PDF
    This thesis generalizes techniques for processing IoT data streams, semantically enrich data with contextual information, as well as complex event processing in IoT applications. A case study for ECG anomaly detection and signal classification was conducted to validate the knowledge foundation

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Creating Intelligent Computational Edge through Semantic Mediation

    Get PDF
    This research proposes semantic mediation based on reasoning and the first order logic for mediating the best possible configuration of Computational Edge, relevant for software applications which may benefit for running computations with proximity to their data sources. The mediation considers the context in which these applications exist and exploits the semantic of that context for decision making on where computational elements should reside and which data they should use. The application of semantic mediation could address the initiative to accommodate algorithms from predictive and learning technologies, push AI towards computational edges and potentially contribute towards creating a computing continuum

    Security Management Framework for the Internet of Things

    Get PDF
    The increase in the design and development of wireless communication technologies offers multiple opportunities for the management and control of cyber-physical systems with connections between smart and autonomous devices, which provide the delivery of simplified data through the use of cloud computing. Given this relationship with the Internet of Things (IoT), it established the concept of pervasive computing that allows any object to communicate with services, sensors, people, and objects without human intervention. However, the rapid growth of connectivity with smart applications through autonomous systems connected to the internet has allowed the exposure of numerous vulnerabilities in IoT systems by malicious users. This dissertation developed a novel ontology-based cybersecurity framework to improve security in IoT systems using an ontological analysis to adapt appropriate security services addressed to threats. The composition of this proposal explores two approaches: (1) design time, which offers a dynamic method to build security services through the application of a methodology directed to models considering existing business processes; and (2) execution time, which involves monitoring the IoT environment, classifying vulnerabilities and threats, and acting in the environment, ensuring the correct adaptation of existing services. The validation approach was used to demonstrate the feasibility of implementing the proposed cybersecurity framework. It implies the evaluation of the ontology to offer a qualitative evaluation based on the analysis of several criteria and also a proof of concept implemented and tested using specific industrial scenarios. This dissertation has been verified by adopting a methodology that follows the acceptance in the research community through technical validation in the application of the concept in an industrial setting.O aumento no projeto e desenvolvimento de tecnologias de comunicação sem fio oferece múltiplas oportunidades para a gestão e controle de sistemas ciber-físicos com conexões entre dispositivos inteligentes e autônomos, os quais proporcionam a entrega de dados simplificados através do uso da computação em nuvem. Diante dessa relação com a Internet das Coisas (IoT) estabeleceu-se o conceito de computação pervasiva que permite que qualquer objeto possa comunicar com os serviços, sensores, pessoas e objetos sem intervenção humana. Entretanto, o rápido crescimento da conectividade com as aplicações inteligentes através de sistemas autônomos conectados com a internet permitiu a exposição de inúmeras vulnerabilidades dos sistemas IoT para usuários maliciosos. Esta dissertação desenvolveu um novo framework de cibersegurança baseada em ontologia para melhorar a segurança em sistemas IoT usando uma análise ontológica para a adaptação de serviços de segurança apropriados endereçados para as ameaças. A composição dessa proposta explora duas abordagens: (1) tempo de projeto, o qual oferece um método dinâmico para construir serviços de segurança através da aplicação de uma metodologia dirigida a modelos, considerando processos empresariais existentes; e (2) tempo de execução, o qual envolve o monitoramento do ambiente IoT, a classificação de vulnerabilidades e ameaças, e a atuação no ambiente garantindo a correta adaptação dos serviços existentes. Duas abordagens de validação foram utilizadas para demonstrar a viabilidade da implementação do framework de cibersegurança proposto. Isto implica na avaliação da ontologia para oferecer uma avaliação qualitativa baseada na análise de diversos critérios e também uma prova de conceito implementada e testada usando cenários específicos. Esta dissertação foi validada adotando uma metodologia que segue a validação na comunidade científica através da validação técnica na aplicação do nosso conceito em um cenário industrial
    corecore