78,138 research outputs found

    Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using Baselines

    Full text link
    Learning strategies for imperfect information games from samples of interaction is a challenging problem. A common method for this setting, Monte Carlo Counterfactual Regret Minimization (MCCFR), can have slow long-term convergence rates due to high variance. In this paper, we introduce a variance reduction technique (VR-MCCFR) that applies to any sampling variant of MCCFR. Using this technique, per-iteration estimated values and updates are reformulated as a function of sampled values and state-action baselines, similar to their use in policy gradient reinforcement learning. The new formulation allows estimates to be bootstrapped from other estimates within the same episode, propagating the benefits of baselines along the sampled trajectory; the estimates remain unbiased even when bootstrapping from other estimates. Finally, we show that given a perfect baseline, the variance of the value estimates can be reduced to zero. Experimental evaluation shows that VR-MCCFR brings an order of magnitude speedup, while the empirical variance decreases by three orders of magnitude. The decreased variance allows for the first time CFR+ to be used with sampling, increasing the speedup to two orders of magnitude

    Estimation of Finite Sequential Games

    Get PDF
    I study the estimation of finite sequential games with perfect information. The major challenge in estimation is computation of high-dimensional truncated integration whose domain is complicated by strategic interaction. I show that this complication resolves when unobserved off-the-equilibrium-path strategies are controlled for. Separately evaluating the likelihood contribution of each subgame perfect strategy profile that rationalizes the observed outcome allows the use of the GHK simulator, the most widely used importance-sampling probit simulator. Monte Carlo experiments demonstrate the performance and robustness of the proposed method, and confirm that misspecification of the decision order leads to underestimation of strategic effect.Inference In Discrete Games; Sequential Games; Monte Carlo Integration; GHK Simulator; Subgame Perfection; Perfect Information

    Predicting Human Cooperation

    Full text link
    The Prisoner's Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner's Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner's Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner's Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner's Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The computational model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is extremely successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation.Comment: Added references. New inline citation style. Added small portions of text. Re-compiled Rmarkdown file with updated ggplot2 so small aesthetic changes to plot
    • ā€¦
    corecore