201 research outputs found

    Instructional strategies and tactics for the design of introductory computer programming courses in high school

    Get PDF
    This article offers an examination of instructional strategies and tactics for the design of introductory computer programming courses in high school. We distinguish the Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in their general design plan to control students' processing load. In order, they emphasize topdown program design, incremental learning, and program modification and amplification. In contrast, tactics are specific design plans that prescribe methods to reach desired learning outcomes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we distinguish between declarative and procedural instruction and present six tactics which can be used both to design courses and to evaluate strategies. Three tactics for declarative instruction involve concrete computer models, programming plans and design diagrams; three tactics for procedural instruction involve worked-out examples, practice of basic cognitive skills and task variation. In our evaluation of groups of instructional strategies, the Reading approach has been found to be superior to the Expert and Spiral approaches

    The Role of Geospatial Thinking and Geographic Skills in Effective Problem Solving with GIS: K-16 Education

    Get PDF
    Effective use of a Geographic Information System (GIS) is hampered by the limited geospatial reasoning abilities of students. The ability to reason with spatial relations, more specifically apply geospatial concepts, including the identification of spatial patterns and spatial associations, is important to geographic problem solving in a GIS context. This dissertation examines the broad influence of three factors on GIS problem solving: 1) affection towards computers, geography, and mathematics, 2) geospatial thinking, as well as 3) geographic skills. The research was conducted with 104 students in Waterloo, Ontario, Canada. Students were drawn from four educational levels: grade 9 students, 13 to 14 years of age; 1st year undergraduate university students, 3rd and 4th year undergraduate geography majors; and geography students at the graduate level ranging from 22 to 32 years of age. The level of affection is measured with modified scales borrowed from psychology. Results show that students in general exhibit positive sentiments toward computers and geography but less so towards mathematics. Spatial thinking and knowledge of geospatial concepts are measured by a 30-item scale differentiating among spatial thinkers along a novice-expert continuum. Scores on the scale showed an increase in spatial reasoning ability with age, grade, and level of education, such that grade 9 students averaged 7.5 out of 30 while the mean score of graduate students was 20.6. The final exercise assessed pertinent skills to geography namely inquiry, data collection, and analysis. In general, there was a positive correlation in the scores such that the skill proficiency increased with grade. Related analysis found three factors that affect problem-solving performance with a GIS. These include age, geographic skills (inquiry and analysis), and geospatial thinking (subscales analysis, representation, comprehension, and application). As well, the relationship(s) between performance on the geospatial scale and the observed problem-solving sequences and strategies applied on a GIS was examined. In general, students with lower scores were more apt to use basic visualization (zoom/measure tools) or buffer operations, while those with higher scores used a combination of buffers, intersection, and spatial queries. There were, however, exceptions as some advanced students used strategies that overly complicated the problem while others used visualization tools alone. The study concludes with a discussion on future research directions, followed by a series of pencil and paper games aimed to develop spatial thinking within a geographic setting

    Using Insights from Cognitive Neuroscience to Investigate the Effects of Event-Driven Process Chains on Process Model Comprehension

    Get PDF
    Business process models have been adopted by enterprises for more than a decade. Especially for domain experts, the comprehension of process models constitutes a challenging task that needs to be mastered when creating or reading these models. This paper presents the results we obtained from an eye tracking experiment on process model comprehension. In detail, individuals with either no or advanced expertise in process modeling were confronted with models expressed in terms of Event-driven Process Chains (EPCs), reflecting different levels of difficulty. The first results of this experiment confirm recent findings from one of our previous experiments on the reading and comprehension of process models. On one hand, independent from their level of exper-tise, all individuals face similar patterns, when being confronted with process models exceeding a certain level of difficulty. On the other, it appears that process models expressed in terms of EPCs are perceived differently compared to process models specified in the Business Process Model and Notation (BPMN). In the end, their generalization needs to be confirmed by additional empirical experiments. The presented expe-riment continues a series of experiments that aim to unravel the factors fostering the comprehension of business process models by using methods and theories stemming from the field of cognitive neuroscience and psychology

    Knowledge restructing and the development of expertise in computer programming

    Get PDF
    This thesis reports a number of empirical studies exploring the development of expertise in computer programming. Experiments 1 and 2 are concerned with the way in which the possession of design experience can influence the perception and use of cues to various program structures. Experiment 3 examines how violations to standard conventions for constructing programs can affect the comprehension of expert, intermediate and novice subjects. Experiment 4 looks at the differences in strategy that are exhibited by subjects of varying skill level when constructing programs in different languages. Experiment 5 takes these ideas further to examine the temporal distribution of different forms of strategy during a program generation task. Experiment 6 provides evidence for salient cognitive structures derived from reaction time and error data in the context of a recognition task. Experiments 7 and 8 are concerned with the role of working memory in program generation and suggest that one aspect of expertise in the programming domain involves the acquisition of strategies for utilising display-based information. The final chapter attempts to bring these experimental findings together in terms of a model of knowledge organisation that stresses the importance of knowledge restructuring processes in the development of expertise. This is contrasted with existing models which have tended to place emphasis upon schemata acquisition and generalisation as the fundamental modes of learning associated with skill development. The work reported here suggests that a fine-grained restructuring of individual schemata takes places during the later stages of skill development. It is argued that those mechanisms currently thought to be associated with the development of expertise may not fully account for the strategic changes and the types of error typically found in the transition between novice, intermediate and expert problem solvers. This work has a number of implications for existing theories of skill acquisition. In particular, it questions the ability of such theories to account for subtle changes in the various manifestations of skilled performance that are associated with increasing expertise. Secondly, the work reported in this thesis attempts to show how specific forms of training might give rise to the knowledge restructuring process that is proposed. Finally, the thesis stresses the important role of display-based problem solving in complex tasks such as programming and highlights the role of programming language notation as a mediating factor in the development and acquisition of problem solving strategies

    Role of Causal Information in Patient Education: An Experimental and Clinical Approach

    Get PDF
    Abstract It is somewhat paradoxical that few patient education interventions actually consider the processes by which individuals best learn health-related information. The paucity of empirically validated teaching strategies impedes efforts to improve the delivery of care in cardiovascular rehabilitation and secondary prevention (CRSP) programs. The main goal of this dissertation was to examine whether explaining how illness pathophysiology, symptoms and health behaviour are interconnected (i.e., causal information) enhances the effectiveness of patient education materials. This question was first addressed in a laboratory setting (Study 1) in which younger and older adults read about a fictitious disease under two conditions. Younger participants who read about how health behaviours were causally linked to illness pathophysiology and symptom reduction were better able to apply their knowledge than those who read this information in a non-integrated manner. However, this effect was not observed in the older sample. These findings were followed up in a cluster randomized controlled trial, in which causal information about connections among endothelial pathophysiology, cardiac risk factors, symptoms and health behaviours were integrated into a group education session at a Cardiac Rehabilitation and Secondary Prevention (CRSP) program. Results from Study 2 indicated that the addition of causal information was associated with deeper levels of knowledge about cardiovascular management and enhanced efficacy beliefs about the CRSP program. Study 3, which focused on participants’ behaviours, showed that the intervention did not impact patients’ likelihood to enroll into CRSP nor their physical activity levels four months into the program. The intervention group was marginally faster at completing prerequisites for program entry, but baseline characteristics, including anxiety and male gender, were stronger predictors of this behavior. The present dissertation is the first to provide empirical support for the inclusion of causal information into patient education curricula. Findings indicate that patients’ depth of understanding warrants more attention in patient education contexts. Taken together, results from this dissertation serve as a stepping-stone towards enhancing provider-patient collaboration by demonstrating that patients have a better understanding when they are told why they are being asked to follow the cardiovascular management recommendations rather than simply being told what to do

    Using eye-tracking to investigate strategy and performance of expert and novice control room operators

    Get PDF
    There is lacking research within the Petrochemical Industry that uses eye-tracking to explore the differences between the strategies of expert and novice control room operators as they monitor and address process parameters that could be used to improve novice training programs and interface design. Scan paths and three eye-tracking metrics (Fixation Frequency, Gaze Duration Mean, and Gaze Percentage) were used to investigate the differences in eye behavior of three expert control room operators and six novice students as they monitored and corrected a Crude Refinement simulation. A 2x2x2 mixed factor design was used to explore the effects that expertise (expert and novice), interface type (black and grey), and alarm activity (active and inactive) had on participant eye behavior specifically, fixation frequency, gaze duration mean, and gaze percentage for certain areas of interest. The display was separated into 6 different areas and each area resulted in distinct eye statistics. Scan paths were plotted surrounding a subtle setpoint change within the simulation and were qualitatively analyzed to reveal differences due to expertise, interface type and alarm activity. The MANOVA revealed no significant differences due to expertise, interface type, and alarm activity. The single ANOVAs revealed that participants had higher fixation frequencies on the Main display during monitoring periods than during active periods revealing that both expert and novice participants’ attention was more divided when there were failures and alarms present than when the process was running at normal conditions. Also, experts spent a larger percentage of time monitoring the critical crude temperature and flow controller than novices. Pearson’s correlation between dependent variables revealed a positive correlation between fixation frequency and gaze percentage that indicated that participants typically had many, quick fixations rather than few, long fixations. Scan path analysis revealed that active monitoring and interface background color influenced how quickly operators discovered the setpoint change on screen. Overall, eye-tracking successfully detected differences between participants and interface types that can benefit novice training and display design

    The World (of Warcraft) through the eyes of an expert

    Get PDF
    Negative correlations between pupil size and the tendency to look at salient locations were found in recent studies (e.g., Mathôt et al., 2015). It is hypothesized that this negative correlation might be explained by the mental effort put by participants in the task that leads in return to pupil dilation. Here we present an exploratory study on the effect of expertise on eye-movement behavior. Because there is no available standard tool to evaluate WoW players’ expertise, we built an off-game questionnaire testing players’ knowledge about WoW and acquired skills through completed raids, highest rated battlegrounds, Skill Points, etc. Experts (N = 4) and novices (N = 4) in the massively multiplayer online role-playing game World of Warcraft (WoW) viewed 24 designed video segments from the game that differ in regards with their content (i.e, informative locations) and visual complexity (i.e, salient locations). Consistent with previous studies, we found a negative correlation between pupil size and the tendency to look at salient locations (experts, r =  − .17, p < .0001, and novices, r =  − .09, p < .0001). This correlation has been interpreted in terms of mental effort: People are inherently biased to look at salient locations (sharp corners, bright lights, etc.), but are able (i.e., experts) to overcome this bias if they invest sufficient mental effort. Crucially, we observed that this correlation was stronger for expert WoW players than novice players (Z =  − 3.3, p = .0011). This suggests that experts learned to improve control over eye-movement behavior by guiding their eyes towards informative, but potentially low-salient areas of the screen. These findings may contribute to our understanding of what makes an expert an expert
    corecore