1,052 research outputs found

    Coordinating Local Adaptive Strategies through a Network-Based Approach

    Get PDF
    As the impacts of climate change become increasingly destructive and pervasive, climate adaptation has received greater political and academic attention. The traditional top-down model for mitigating climate change, however, is ill-suited to implementing effective adaptation strategies. Yet, local communities most impacted by climate change seldom have the tools and resources to develop effective adaptive strategies on their own. This note argues that a bottom-up, network-based approach could be a promising paradigm towards implementing effective adaptive strategies and empowering affected communities

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Organizational Perceptions and Responses to the Natural Environment

    Get PDF
    In 2005, the Millennium Ecosystem Assessment reported that two-thirds of the world’s ecosystems were being exploited well beyond sustainable levels. Given that many firms across sectors rely on natural resources to conduct business, it is surprising that many have failed to make their business practices more sustainable. I believe this occurs not because companies are acting in their own enlightened self-interests, but because they are unable to perceive the severity of such issues. The key is that perceptual deficiencies are not the result of blatant disregard, but of systemic incompatibility. That is, most companies do not choose to ignore environmental harm, but their orientation is such that they often overlook it. The goal of this dissertation is to offer an in-depth conceptualization and analysis of the role that geographical space plays in shaping a firm’s relationship to the natural environment. To do so, I develop three distinct but compatible essays that collectively answer the question, what affect does geographical space have in influencing a firm’s attention and response to environmental issues? In the first essay, I develop a comprehensive theory of scale within the context of environmental issues, to highlight how organizational attention is constrained by scale such that when there is fit in scale between the organization and environmental issue, organizational attention will be enhanced and will result in better corporate environmental performance. In the second essay, I go forward and empirically test the organizational dimensions of scale, which I define as geographical orientation, with the prediction that certain scale characteristics can impede a firm’s ability to perceive important environmental issues. The analysis reveals that the spread and concentration of a firm’s assets affects its environmental performance. For the third essay, in the context of chemical emissions, I explore whether the environmental materiality of an issue affects a firm’s environmental performance. The results support the general proposition that the spatial characteristics of the issue affect a firm’s environmental performance through time. Taken as a whole, this dissertation sheds some light on possible ways to identify and potentially mitigate unsustainable corporate behavior

    Deep Learning based Vehicle Detection in Aerial Imagery

    Get PDF
    Der Einsatz von luftgestützten Plattformen, die mit bildgebender Sensorik ausgestattet sind, ist ein wesentlicher Bestandteil von vielen Anwendungen im Bereich der zivilen Sicherheit. Bekannte Anwendungsgebiete umfassen unter anderem die Entdeckung verbotener oder krimineller Aktivitäten, Verkehrsüberwachung, Suche und Rettung, Katastrophenhilfe und Umweltüberwachung. Aufgrund der großen Menge zu verarbeitender Daten und der daraus resultierenden kognitiven Überbelastung ist jedoch eine Analyse der Luftbilddaten ausschließlich durch menschliche Auswerter in der Praxis nicht anwendbar. Zur Unterstützung der menschlichen Auswerter kommen daher in der Regel automatische Bild- und Videoverarbeitungsalgorithmen zum Einsatz. Eine zentrale Aufgabe bildet dabei eine zuverlässige Detektion relevanter Objekte im Sichtfeld der Kamera, bevor eine Interpretation der gegebenen Szene stattfinden kann. Die geringe Bodenauflösung aufgrund der großen Distanz zwischen Kamera und Erde macht die Objektdetektion in Luftbilddaten zu einer herausfordernden Aufgabe, welche durch Bewegungsunschärfe, Verdeckungen und Schattenwurf zusätzlich erschwert wird. Obwohl in der Literatur eine Vielzahl konventioneller Ansätze zur Detektion von Objekten in Luftbilddaten existiert, ist die Detektionsgenauigkeit durch die Repräsentationsfähigkeit der verwendeten manuell entworfenen Merkmale beschränkt. Im Rahmen dieser Arbeit wird ein neuer Deep-Learning basierter Ansatz zur Detektion von Objekten in Luftbilddaten präsentiert. Der Fokus der Arbeit liegt dabei auf der Detektion von Fahrzeugen in Luftbilddaten, die senkrecht von oben aufgenommen wurden. Grundlage des entwickelten Ansatzes bildet der Faster R-CNN Detektor, der im Vergleich zu anderen Deep-Learning basierten Detektionsverfahren eine höhere Detektionsgenauigkeit besitzt. Da Faster R-CNN wie auch die anderen Deep-Learning basierten Detektionsverfahren auf Benchmark Datensätzen optimiert wurden, werden in einem ersten Schritt notwendige Anpassungen an die Eigenschaften der Luftbilddaten, wie die geringen Abmessungen der zu detektierenden Fahrzeuge, systematisch untersucht und daraus resultierende Probleme identifiziert. Im Hinblick auf reale Anwendungen sind hier vor allem die hohe Anzahl fehlerhafter Detektionen durch fahrzeugähnliche Strukturen und die deutlich erhöhte Laufzeit problematisch. Zur Reduktion der fehlerhaften Detektionen werden zwei neue Ansätze vorgeschlagen. Beide Ansätze verfolgen dabei das Ziel, die verwendete Merkmalsrepräsentation durch zusätzliche Kontextinformationen zu verbessern. Der erste Ansatz verfeinert die räumlichen Kontextinformationen durch eine Kombination der Merkmale von frühen und tiefen Schichten der zugrundeliegenden CNN Architektur, so dass feine und grobe Strukturen besser repräsentiert werden. Der zweite Ansatz macht Gebrauch von semantischer Segmentierung um den semantischen Informationsgehalt zu erhöhen. Hierzu werden zwei verschiedene Varianten zur Integration der semantischen Segmentierung in das Detektionsverfahren realisiert: zum einen die Verwendung der semantischen Segmentierungsergebnisse zur Filterung von unwahrscheinlichen Detektionen und zum anderen explizit durch Verschmelzung der CNN Architekturen zur Detektion und Segmentierung. Sowohl durch die Verfeinerung der räumlichen Kontextinformationen als auch durch die Integration der semantischen Kontextinformationen wird die Anzahl der fehlerhaften Detektionen deutlich reduziert und somit die Detektionsgenauigkeit erhöht. Insbesondere der starke Rückgang von fehlerhaften Detektionen in unwahrscheinlichen Bildregionen, wie zum Beispiel auf Gebäuden, zeigt die erhöhte Robustheit der gelernten Merkmalsrepräsentationen. Zur Reduktion der Laufzeit werden im Rahmen der Arbeit zwei alternative Strategien verfolgt. Die erste Strategie ist das Ersetzen der zur Merkmalsextraktion standardmäßig verwendeten CNN Architektur mit einer laufzeitoptimierten CNN Architektur unter Berücksichtigung der Eigenschaften der Luftbilddaten, während die zweite Strategie ein neues Modul zur Reduktion des Suchraumes umfasst. Mit Hilfe der vorgeschlagenen Strategien wird die Gesamtlaufzeit sowie die Laufzeit für jede Komponente des Detektionsverfahrens deutlich reduziert. Durch Kombination der vorgeschlagenen Ansätze kann sowohl die Detektionsgenauigkeit als auch die Laufzeit im Vergleich zur Faster R-CNN Baseline signifikant verbessert werden. Repräsentative Ansätze zur Fahrzeugdetektion in Luftbilddaten aus der Literatur werden quantitativ und qualitativ auf verschiedenen Datensätzen übertroffen. Des Weiteren wird die Generalisierbarkeit des entworfenen Ansatzes auf ungesehenen Bildern von weiteren Luftbilddatensätzen mit abweichenden Eigenschaften demonstriert

    Unraveling the intricacies of spatial organization of the ErbB receptors and downstream signaling pathways

    Get PDF
    Faced with the complexity of diseases such as cancer which has 1012 mutations, altering gene expression, and disrupting regulatory networks, there has been a paradigm shift in the biological sciences and what has emerged is a much more quantitative field of biology. Mathematical modeling can aid in biological discovery with the development of predictive models that provide future direction for experimentalist. In this work, I have contributed to the development of novel computational approaches which explore mechanisms of receptor aggregation and predict the effects of downstream signaling. The coupled spatial non-spatial simulation algorithm, CSNSA is a tool that I took part in developing, which implements a spatial kinetic Monte Carlo for capturing receptor interactions on the cell membrane with Gillespies stochastic simulation algorithm, SSA, for temporal cytosolic interactions. Using this framework we determine that receptor clustering significantly enhances downstream signaling. In the next study the goal was to understand mechanisms of clustering. Cytoskeletal interactions with mobile proteins are known to hinder diffusion. Using a Monte Carlo approach we simulate these interactions, determining at what cytoskeletal distribution and receptor concentration optimal clustering occurs and when it is inhibited. We investigate oligomerization induced trapping to determine mechanisms of clustering, and our results show that the cytoskeletal interactions lead to receptor clustering. After exploring the mechanisms of clustering we determine how receptor aggregation effects downstream signaling. We further proceed by implementing the adaptively coarse grained Monte Carlo, ACGMC to determine if \u27receptor-sharing\u27 occurs when receptors are clustered. In our proposed \u27receptor-sharing\u27 mechanism a cytosolic species binds with a receptor then disassociates and rebinds a neighboring receptor. We tested our hypothesis using a novel computational approach, the ACGMC, an algorithm which enables the spatial temporal evolution of the system in three dimensions by using a coarse graining approach. In this framework we are modeling EGFR reaction-diffusion events on the plasma membrane while capturing the spatial-temporal dynamics of proteins in the cytosol. From this framework we observe \u27receptor-sharing\u27 which may be an important mechanism in the regulation and overall efficiency of signal transduction. In summary, I have helped to develop predictive computational tools that take systems biology in a new direction.\u2
    • …
    corecore