1,458 research outputs found

    Ped-Air: A Simulator for Loading, Unloading, and Evacuating Aircraft

    Get PDF
    AbstractWe present Ped-Air, a pedestrian simulation system to model the loading, unloading, and evacuation of commercial aircraft. We address the challenge of simulating passenger movement in constrained spaces (e.g., aisles and rows), along with complex, coordinating behaviors between the passengers. Ped-Air models different categories of passengers and flight crew, capturing their unique behaviors and complex interactions. We exhibit Ped-Airs capabilities by simulating passenger movements on two representative aircraft: a single-aisle Boeing 737, and a double-aisle Boeing 777. We are able to simulate the following behaviors: stress, luggage placement, flight staff assisting passengers, obstructed exits for evacuation

    Multi-level Optimization with Pricing Strategy under Boundedly Rationality User Equilibrium

    Get PDF
    We study multi-level optimization problem on energy system, transportation system and information network. We use the concept of boundedly rational user equilibrium (BRUE) to predict the behaviour of users in systems. By using multi-level optimization method with BRUE, we can help to operate the system work in a more efficient way. Based on the introducing of model with BRUE constraints, it will lead to the uncertainty to the optimization model. We generate the robust optimization as the multi-level optimization model to consider for the pessimistic condition with uncertainty. This dissertation mainly includes four projects. Three of them use the pricing strategy as the first level optimization decision variable. In general, our models\u27 first level\u27s decision variables are the measures that we can control, but the second level\u27s decision variables are users behaviours that can only be restricted within BRUE with uncertainty

    スケーラブルなマルチエージェント大都市域避難行動シミュレータの自動車の考慮に重点をおいた拡張と適用

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 マッデゲダラ ラリス, 東京大学教授 堀 宗朗, 東京大学教授 大口 敬, 東京大学教授 堀田 昌英, 東京大学准教授 市村 強, 東京大学准教授 柳澤 大地University of Tokyo(東京大学

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation

    Get PDF
    Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1) indoor positioning and localization; 2) indoor space representation for navigation model generation; 3) indoor routing computation; 4) human wayfinding behaviours; and 5) indoor guidance (e.g., textual directories). So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles), which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest). In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first) level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges stand for their connectivity; the detailed (second) level focuses on transition spaces such as openings and Spaces of Interest (SOI), and geometric networks are generated regarding these spaces. Nodes of a geometric network refers to locations of doors, windows and subspaces (SOIs) inside of the larger spaces; and the edges represent detailed paths among these geometric nodes. A combination of the two levels can represent complex buildings in specified spaces, which avoids maintaining a largescale complete network. User preferences on ordered SOIs are considered in routing on the logical network, and preferences on ordered Points of Interest (POI) are adopted in routing on geometric networks. In a geometric network, accessible obstacle-avoiding paths can be computed for users with different sizes. To facilitate automatic generation of the two types of network in any building, a new data model named Indoor Navigation Space Model (INSM) is proposed to store connectivity, semantics and geometry of indoor spaces for buildings. Abundant semantics of building components are designed in INSM based on navigational functionalities, such as VerticalUnit(VU) and HorizontalConnector(HC) as vertical and horizontal passages for pedestrians. The INSM supports different subdivision ways of a building in which indoor spaces can be assigned proper semantics. A logical and geometric network can be automatically derived from INSM, and they can be used individually or together for indoor routing. Thus, different routing options are designed. Paths can be provided by using either the logical network when some users are satisfied with a rough description of the path (e.g., the name of spaces), or a geometric path is automatically computed for a user who needs only a detailed path which shows how obstacles can be avoided. The two-level routing approach integrates both logical and geometric networks to obtain paths, when a user provides her/his preferences on SOIs and POIs. For example, routing results for the logical network can exclude unrelated spaces and then derive geometric paths more efficiently. In this thesis, two options are proposed for routing just on the logical network, three options are proposed for routing just on the geometric networks, and seven options for two-level routing. On the logical network, six routing criteria are proposed and three human wayfinding strategies are adopted to simulate human indoor behaviours. According to a specific criterion, space semantics of logical nodes is utilized to assign different weights to logical nodes and edges. Therefore, routing on the logical network can be accomplished by applying the Dijkstra algorithm. If multiple criteria are adopted, an order of criteria is applied for routing according to a specific user. In this way, logical paths can be computed as a sequence of indoor spaces with clear semantics. On geometric networks, this thesis proposes a new routing method to provide detailed paths avoiding indoor obstacles with respect to pedestrian sizes. This method allows geometric networks to be derived for individual users with different sizes for any specified spaces. To demonstrate the use of the two types of network, this thesis tests routing on one level (the logical or the geometric network). Four case studies about the logical network are presented in both simple and complex buildings. In the simple building, no multiple paths lie between spaces A and B, but in the complex buildings, multiple logical paths exist and the candidate paths can be reduced by applying these routing criteria in an order for a user. The relationships of these criteria to user profiles are assumed in this thesis. The proposed geometric routing regarding user sizes is tested with three case studies: 1) routing for pedestrians with two distinct sizes in one space; 2) routing for pedestrians with changed sizes in one space; and 3) a larger geometric network formed by the ones in a given sequence of spaces. The first case shows that a small increase of user size can largely change the accessible path; the second case shows different path segments for distinct sizes can be combined into one geometric path; the third case demonstrates a geometric network can be created ’on the fly’ for any specified spaces of a building. Therefore, the generation and routing of geometric networks are very flexible and fit to given users. To demonstrate the proposed two-level routing approach, this thesis designs five cases. The five cases are distinguished according to the method of model creation (pre-computed or ’on-the-fly’) and model storage (on the client or server). Two of them are realized in this thesis: 1) Case 1 just in the client pre-computes the logical network and derives geometric networks ’on the fly’; 2) Case 2 just in the client pre-computes and stores the logical and geometric networks for certain user sizes. Case 1 is implemented in a desktop application for building managers, and Case 2 is realized as a mobile mock-up for mobile users without an internet connection. As this thesis shows, two-level routing is powerful enough to effectively provide indicative logical paths and/or comprehensive geometric paths, according to different user requirements on path details. In the desktop application, three of the proposed routing options for two-level routing are tested for the simple OTB building and the complex Schiphol Airport building. These use cases demonstrate that the two-level routing approach includes the following merits: It supports routing in different abstraction forms of a building. The INSM model can describe different subdivision results of a building, and it allows two types of routing network to be derived – pure logical and geometric ones. The logical network contains the topology and semantics of indoor spaces, and the geometric network provides accurate geometry for paths. A consistent navigation model is formed with the two networks, i.e., the conceptual and detailed levels. On the conceptual level, it supports routing on a logical network and assists the derivation of a conceptual path (i.e., logical path) for a user in terms of space sequence. Routing criteria are designed based on the INSM semantics of spaces, which can generate logical paths similar to human wayfinding results such as minimizing VerticalUnit or HorizontalConnector. On the detailed level, it considers the size of users and results in obstacle-avoiding paths. By using this approach, geometric networks can be generated to avoid obstacles for the given users and accessible paths are flexibly provided for user demands. This approach can process changes of user size more efficiently, in contrast to routing on a complete geometric network. It supports routing on both the logical and the geometric networks, which can generate geometric paths based on user-specific logical paths, or re-compute logical paths when geometric paths are inaccessible. This computation method is very useful for complex buildings. The two-level routing approach can flexibly provide logical and geometric paths according to user preferences and sizes, and can adjust the generated paths in limited time. Based on the two-level routing approach, this thesis also provides a vision on possible cooperation with other methods. A potential direction is to design more routing options according to other indoor scenarios and user preferences. Extensions of the two-level routing approach, such as other types of semantics, multi-level networks and dynamic obstacles, will make it possible to deal with other routing cases. Last but not least, it is also promising to explore its relationships with indoor guidance, different building subdivisions and outdoor navigation. &nbsp

    Indoor Semantic Modelling for Routing:

    Get PDF
    Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1) indoor positioning and localization; 2) indoor space representation for navigation model generation; 3) indoor routing computation; 4) human wayfinding behaviours; and 5) indoor guidance (e.g., textual directories). So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles), which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest). In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first) level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges stand for their connectivity; the detailed (second) level focuses on transition spaces such as openings and Spaces of Interest (SOI), and geometric networks are generated regarding these spaces. Nodes of a geometric network refers to locations of doors, windows and subspaces (SOIs) inside of the larger spaces; and the edges represent detailed paths among these geometric nodes. A combination of the two levels can represent complex buildings in specified spaces, which avoids maintaining a largescale complete network. User preferences on ordered SOIs are considered in routing on the logical network, and preferences on ordered Points of Interest (POI) are adopted in routing on geometric networks. In a geometric network, accessible obstacle-avoiding paths can be computed for users with different sizes. To facilitate automatic generation of the two types of network in any building, a new data model named Indoor Navigation Space Model (INSM) is proposed to store connectivity, semantics and geometry of indoor spaces for buildings. Abundant semantics of building components are designed in INSM based on navigational functionalities, such as VerticalUnit(VU) and HorizontalConnector(HC) as vertical and horizontal passages for pedestrians. The INSM supports different subdivision ways of a building in which indoor spaces can be assigned proper semantics. A logical and geometric network can be automatically derived from INSM, and they can be used individually or together for indoor routing. Thus, different routing options are designed. Paths can be provided by using either the logical network when some users are satisfied with a rough description of the path (e.g., the name of spaces), or a geometric path is automatically computed for a user who needs only a detailed path which shows how obstacles can be avoided. The two-level routing approach integrates both logical and geometric networks to obtain paths, when a user provides her/his preferences on SOIs and POIs. For example, routing results for the logical network can exclude unrelated spaces and then derive geometric paths more efficiently. In this thesis, two options are proposed for routing just on the logical network, three options are proposed for routing just on the geometric networks, and seven options for two-level routing. On the logical network, six routing criteria are proposed and three human wayfinding strategies are adopted to simulate human indoor behaviours. According to a specific criterion, space semantics of logical nodes is utilized to assign different weights to logical nodes and edges. Therefore, routing on the logical network can be accomplished by applying the Dijkstra algorithm. If multiple criteria are adopted, an order of criteria is applied for routing according to a specific user. In this way, logical paths can be computed as a sequence of indoor spaces with clear semantics. On geometric networks, this thesis proposes a new routing method to provide detailed paths avoiding indoor obstacles with respect to pedestrian sizes. This method allows geometric networks to be derived for individual users with different sizes for any specified spaces. To demonstrate the use of the two types of network, this thesis tests routing on one level (the logical or the geometric network). Four case studies about the logical network are presented in both simple and complex buildings. In the simple building, no multiple paths lie between spaces A and B, but in the complex buildings, multiple logical paths exist and the candidate paths can be reduced by applying these routing criteria in an order for a user. The relationships of these criteria to user profiles are assumed in this thesis. The proposed geometric routing regarding user sizes is tested with three case studies: 1) routing for pedestrians with two distinct sizes in one space; 2) routing for pedestrians with changed sizes in one space; and 3) a larger geometric network formed by the ones in a given sequence of spaces. The first case shows that a small increase of user size can largely change the accessible path; the second case shows different path segments for distinct sizes can be combined into one geometric path; the third case demonstrates a geometric network can be created ’on the fly’ for any specified spaces of a building. Therefore, the generation and routing of geometric networks are very flexible and fit to given users. To demonstrate the proposed two-level routing approach, this thesis designs five cases. The five cases are distinguished according to the method of model creation (pre-computed or ’on-the-fly’) and model storage (on the client or server). Two of them are realized in this thesis: 1) Case 1 just in the client pre-computes the logical network and derives geometric networks ’on the fly’; 2) Case 2 just in the client pre-computes and stores the logical and geometric networks for certain user sizes. Case 1 is implemented in a desktop application for building managers, and Case 2 is realized as a mobile mock-up for mobile users without an internet connection. As this thesis shows, two-level routing is powerful enough to effectively provide indicative logical paths and/or comprehensive geometric paths, according to different user requirements on path details. In the desktop application, three of the proposed routing options for two-level routing are tested for the simple OTB building and the complex Schiphol Airport building. These use cases demonstrate that the two-level routing approach includes the following merits: It supports routing in different abstraction forms of a building. The INSM model can describe different subdivision results of a building, and it allows two types of routing network to be derived – pure logical and geometric ones. The logical network contains the topology and semantics of indoor spaces, and the geometric network provides accurate geometry for paths. A consistent navigation model is formed with the two networks, i.e., the conceptual and detailed levels. On the conceptual level, it supports routing on a logical network and assists the derivation of a conceptual path (i.e., logical path) for a user in terms of space sequence. Routing criteria are designed based on the INSM semantics of spaces, which can generate logical paths similar to human wayfinding results such as minimizing VerticalUnit or HorizontalConnector. On the detailed level, it considers the size of users and results in obstacle-avoiding paths. By using this approach, geometric networks can be generated to avoid obstacles for the given users and accessible paths are flexibly provided for user demands. This approach can process changes of user size more efficiently, in contrast to routing on a complete geometric network. It supports routing on both the logical and the geometric networks, which can generate geometric paths based on user-specific logical paths, or re-compute logical paths when geometric paths are inaccessible. This computation method is very useful for complex buildings. The two-level routing approach can flexibly provide logical and geometric paths according to user preferences and sizes, and can adjust the generated paths in limited time. Based on the two-level routing approach, this thesis also provides a vision on possible cooperation with other methods. A potential direction is to design more routing options according to other indoor scenarios and user preferences. Extensions of the two-level routing approach, such as other types of semantics, multi-level networks and dynamic obstacles, will make it possible to deal with other routing cases. Last but not least, it is also promising to explore its relationships with indoor guidance, different building subdivisions and outdoor navigation
    corecore