6,517 research outputs found

    Strategies for Replica Placement in Tree Networks

    Get PDF
    In this paper, we discuss and compare several policies to place replicas in tree networks, subject to server capacity and QoS constraints. The client requests are known beforehand, while the number and location of the servers are to be determined. The standard approach in the literature is to enforce that all requests of a client be served by the closest server in the tree. We introduce and study two new policies. In the first policy, all requests from a given client are still processed by the same server, but this server can be located anywhere in the path from the client to the root. In the second policy, the requests of a given client can be processed by multiple servers. One major contribution of this paper is to assess the impact of these new policies on the total replication cost. Another important goal is to assess the impact of server heterogeneity, both from a theoretical and a practical perspective. In this paper, we establish several new complexity results, and provide several efficient polynomial heuristics for NP-complete instances of the problem. These heuristics are compared to an absolute lower bound provided by the formulation of the problem in terms of the solution of an integer linear program

    Optimal Replica Placement in Tree Networks with QoS and Bandwidth Constraints and the Closest Allocation Policy

    Get PDF
    This paper deals with the replica placement problem on fully homogeneous tree networks known as the Replica Placement optimization problem. The client requests are known beforehand, while the number and location of the servers are to be determined. We investigate the latter problem using the Closest access policy when adding QoS and bandwidth constraints. We propose an optimal algorithm in two passes using dynamic programming

    Balancing the Migration of Virtual Network Functions with Replications in Data Centers

    Full text link
    The Network Function Virtualization (NFV) paradigm is enabling flexibility, programmability and implementation of traditional network functions into generic hardware, in form of the so-called Virtual Network Functions (VNFs). Today, cloud service providers use Virtual Machines (VMs) for the instantiation of VNFs in the data center (DC) networks. To instantiate multiple VNFs in a typical scenario of Service Function Chains (SFCs), many important objectives need to be met simultaneously, such as server load balancing, energy efficiency and service execution time. The well-known \emph{VNF placement} problem requires solutions that often consider \emph{migration} of virtual machines (VMs) to meet this objectives. Ongoing efforts, for instance, are making a strong case for migrations to minimize energy consumption, while showing that attention needs to be paid to the Quality of Service (QoS) due to service interruptions caused by migrations. To balance the server allocation strategies and QoS, we propose using \emph{replications} of VNFs to reduce migrations in DC networks. We propose a Linear Programming (LP) model to study a trade-off between replications, which while beneficial to QoS require additional server resources, and migrations, which while beneficial to server load management can adversely impact the QoS. The results show that, for a given objective, the replications can reduce the number of migrations and can also enable a better server and data center network load balancing

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor
    • …
    corecore