15 research outputs found

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    Unfolding Convex Polyhedra via Radially Monotone Cut Trees

    Get PDF
    A notion of "radially monotone" cut paths is introduced as an effective choice for finding a non-overlapping edge-unfolding of a convex polyhedron. These paths have the property that the two sides of the cut avoid overlap locally as the cut is infinitesimally opened by the curvature at the vertices along the path. It is shown that a class of planar, triangulated convex domains always have a radially monotone spanning forest, a forest that can be found by an essentially greedy algorithm. This algorithm can be mimicked in 3D and applied to polyhedra inscribed in a sphere. Although the algorithm does not provably find a radially monotone cut tree, it in fact does find such a tree with high frequency, and after cutting unfolds without overlap. This performance of a greedy algorithm leads to the conjecture that spherical polyhedra always have a radially monotone cut tree and unfold without overlap.Comment: 41 pages, 39 figures. V2 updated to cite in an addendum work on "self-approaching curves.

    Tetrahedral Meshes in Biomedical Applications: Generation, Boundary Recovery and Quality Enhancements

    Get PDF
    Mesh generation is a fundamental precursor to finite element implementations for solution of partial differential equations in engineering and science. This dissertation advances the field in three distinct but coupled areas. A robust and fast three dimensional mesh generator for arbitrarily shaped geometries was developed. It deploys nodes throughout the domain based upon user-specified mesh density requirements. The system is integer and pixel based which eliminates round off errors, substantial memory requirements and cpu intensive calculations. Linked, but fully detachable, to the mesh generation system is a physical boundary recovery routine. Frequently, the original boundary topology is required for specific boundary condition applications or multiple material constraints. Historically, this boundary preservation was not available. An algorithm was developed, refined and optimized that recovers the original boundaries, internal and external, with fidelity. Finally, a node repositioning algorithm was developed that maximizes the minimum solid angle of tetrahedral meshes. The highly coveted 2D Delaunay property that maximizes the minimum interior angle of a triangle mesh does not extend to its 3D counterpart, to maximize the minimum solid angle of a tetrahedron mesh. As a consequence, 3D Delaunay created meshes have unacceptable sliver tetrahedral elements albeit composed of 4 high quality triangle sides. These compromised elements are virtually unavoidable and can foil an otherwise intact mesh. The numerical optimization routine developed takes any preexisting tetrahedral mesh and repositions the nodes without changing the mesh topology so that the minimum solid angle of the tetrahedrons is maximized. The overall quality enhancement of the volume mesh might be small, depending upon the initial mesh. However, highly distorted elements that create ill-conditioned global matrices and foil a finite element solver are enhanced significantly

    Unfolding Convex Polyhedra via Radially Monotone Cut Trees

    Get PDF
    A notion of radially monotone cut paths is introduced as an effective choice for finding a non-overlapping edge-unfolding of a convex polyhedron. These paths have the property that the two sides of the cut avoid overlap locally as the cut is infinitesimally opened by the curvature at the vertices along the path. It is shown that a class of planar, triangulated convex domains always have a radially monotone spanning forest, a forest that can be found by an essentially greedy algorithm. This algorithm can be mimicked in 3D and applied to polyhedra inscribed in a sphere. Although the algorithm does not provably find a radially monotone cut tree, it in fact does find such a tree with high frequency, and after cutting unfolds without overlap. This performance of a greedy algorithm leads to the conjecture that spherical polyhedra always have a radially monotone cut tree and unfold without overlap

    Anisotropic Mesh Adaptation for the Finite Element Solution of Anisotropic Diffusion Problems

    Get PDF
    Anisotropic diffusion problems arise in many fields of science and engineering and are modeled by partial differential equations (PDEs) or represented in variational formulations. Standard numerical schemes can produce spurious oscillations when they are used to solve those problems. A common approach is to design a proper numerical scheme or a proper mesh such that the numerical solution satisfies discrete maximum principle (DMP). For problems in variational formulations, numerous research has been done on isotropic mesh adaptation but little work has been done for anisotropic mesh adaptation. In this dissertation, anisotropic mesh adaptation for the finite element solution of anisotropic diffusion problems is investigated. A brief introduction for the related topics is provided. The anisotropic mesh adaptation based on DMP satisfaction is then discussed. An anisotropic non-obtuse angle condition is developed which guarantees that the linear finite element approximation of the steady state problem satisfies DMP. A metric tensor is derived for use in mesh generation based on the anisotropic non-obtuse angle condition. Then DMP satisfaction and error based mesh adaptation are combined together for the first time. For problems in variational formulations, two metric tensors for anisotropic mesh adaptation and one for isotropic mesh adaptation are developed. For anisotropic mesh adaptation, one metric tensor (based on Hessian recovery) is semi-a posterior and the other (based on hierarchical basis error estimator) is completely a posterior. The metric tensor for isotropic mesh adaptation is completely a posterior. All the metric tensors incorporate structural information of the underlying problem into their design and generate meshes that adapt to changes in the structure. The application of anisotropic diffusion filter in image processing is briefly discussed. Numerical examples demonstrate that anisotropic mesh adaptation can significantly improve computational efficiency while still providing good quality result. More research is needed to investigate DMP satisfaction for parabolic problems

    6th International Meshing Roundtable '97

    Full text link

    Texture-Based Segmentation and Finite Element Mesh Generation for Heterogeneous Biological Image Data

    Get PDF
    The design, analysis, and control of bio-systems remain an engineering challenge. This is mainly due to the material heterogeneity, boundary irregularity, and nonlinear dynamics associated with these systems. The recent developments in imaging techniques and stochastic upscaling methods provides a window of opportunity to more accurately assess these bio-systems than ever before. However, the use of image data directly in upscaled stochastic framework can only be realized by the development of certain intermediate steps. The goal of the research presented in this dissertation is to develop a texture-segmentation method and a unstructured mesh generation for heterogeneous image data. The following two new techniques are described and evaluated in this dissertation: 1. A new texture-based segmentation method, using the stochastic continuum concepts and wavelet multi-resolution analysis, is developed for characterization of heterogeneous materials in image data. The feature descriptors are developed to efficiently capture the micro-scale heterogeneity of macro-scale entities. The materials are then segmented at a representative elementary scale at which the statistics of the feature descriptor stabilize. 2. A new unstructured mesh generation technique for image data is developed using a hierarchical data structure. This representation allows for generating quality guaranteed finite element meshes. The framework for both the methods presented in this dissertation, as such, allows them for extending to higher dimensions. The experimental results using these methods conclude them to be promising tools for unifying data processing concepts within the upscaled stochastic framework across biological systems. These are targeted for inclusion in decision support systems where biological image data, simulation techniques and artificial intelligence will be used conjunctively and uniformly to assess bio-system quality and design effective and appropriate treatments that restore system health

    Foundations of space-time finite element methods: polytopes, interpolation, and integration

    Full text link
    The main purpose of this article is to facilitate the implementation of space-time finite element methods in four-dimensional space. In order to develop a finite element method in this setting, it is necessary to create a numerical foundation, or equivalently a numerical infrastructure. This foundation should include a collection of suitable elements (usually hypercubes, simplices, or closely related polytopes), numerical interpolation procedures (usually orthonormal polynomial bases), and numerical integration procedures (usually quadrature rules). It is well known that each of these areas has yet to be fully explored, and in the present article, we attempt to directly address this issue. We begin by developing a concrete, sequential procedure for constructing generic four-dimensional elements (4-polytopes). Thereafter, we review the key numerical properties of several canonical elements: the tesseract, tetrahedral prism, and pentatope. Here, we provide explicit expressions for orthonormal polynomial bases on these elements. Next, we construct fully symmetric quadrature rules with positive weights that are capable of exactly integrating high-degree polynomials, e.g. up to degree 17 on the tesseract. Finally, the quadrature rules are successfully tested using a set of canonical numerical experiments on polynomial and transcendental functions.Comment: 34 pages, 18 figure
    corecore