731,195 research outputs found

    Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization

    Full text link
    We address the problem of scene classification from optical remote sensing (RS) images based on the paradigm of hierarchical metric learning. Ideally, supervised metric learning strategies learn a projection from a set of training data points so as to minimize intra-class variance while maximizing inter-class separability to the class label space. However, standard metric learning techniques do not incorporate the class interaction information in learning the transformation matrix, which is often considered to be a bottleneck while dealing with fine-grained visual categories. As a remedy, we propose to organize the classes in a hierarchical fashion by exploring their visual similarities and subsequently learn separate distance metric transformations for the classes present at the non-leaf nodes of the tree. We employ an iterative max-margin clustering strategy to obtain the hierarchical organization of the classes. Experiment results obtained on the large-scale NWPU-RESISC45 and the popular UC-Merced datasets demonstrate the efficacy of the proposed hierarchical metric learning based RS scene recognition strategy in comparison to the standard approaches.Comment: Undergoing revision in GRS

    PromotionLens: Inspecting Promotion Strategies of Online E-commerce via Visual Analytics

    Full text link
    Promotions are commonly used by e-commerce merchants to boost sales. The efficacy of different promotion strategies can help sellers adapt their offering to customer demand in order to survive and thrive. Current approaches to designing promotion strategies are either based on econometrics, which may not scale to large amounts of sales data, or are spontaneous and provide little explanation of sales volume. Moreover, accurately measuring the effects of promotion designs and making bootstrappable adjustments accordingly remains a challenge due to the incompleteness and complexity of the information describing promotion strategies and their market environments. We present PromotionLens, a visual analytics system for exploring, comparing, and modeling the impact of various promotion strategies. Our approach combines representative multivariant time-series forecasting models and well-designed visualizations to demonstrate and explain the impact of sales and promotional factors, and to support "what-if" analysis of promotions. Two case studies, expert feedback, and a qualitative user study demonstrate the efficacy of PromotionLens.Comment: IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE VIS 2022

    Doctor of Philosophy

    Get PDF
    dissertationA broad range of applications capture dynamic data at an unprecedented scale. Independent of the application area, finding intuitive ways to understand the dynamic aspects of these increasingly large data sets remains an interesting and, to some extent, unsolved research problem. Generically, dynamic data sets can be described by some, often hierarchical, notion of feature of interest that exists at each moment in time, and those features evolve across time. Consequently, exploring the evolution of these features is considered to be one natural way of studying these data sets. Usually, this process entails the ability to: 1) define and extract features from each time step in the data set; 2) find their correspondences over time; and 3) analyze their evolution across time. However, due to the large data sizes, visualizing the evolution of features in a comprehensible manner and performing interactive changes are challenging. Furthermore, feature evolution details are often unmanageably large and complex, making it difficult to identify the temporal trends in the underlying data. Additionally, many existing approaches develop these components in a specialized and standalone manner, thus failing to address the general task of understanding feature evolution across time. This dissertation demonstrates that interactive exploration of feature evolution can be achieved in a non-domain-specific manner so that it can be applied across a wide variety of application domains. In particular, a novel generic visualization and analysis environment that couples a multiresolution unified spatiotemporal representation of features with progressive layout and visualization strategies for studying the feature evolution across time is introduced. This flexible framework enables on-the-fly changes to feature definitions, their correspondences, and other arbitrary attributes while providing an interactive view of the resulting feature evolution details. Furthermore, to reduce the visual complexity within the feature evolution details, several subselection-based and localized, per-feature parameter value-based strategies are also enabled. The utility and generality of this framework is demonstrated by using several large-scale dynamic data sets

    Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D Segmentation

    Full text link
    Current state-of-the-art point cloud-based perception methods usually rely on large-scale labeled data, which requires expensive manual annotations. A natural option is to explore the unsupervised methodology for 3D perception tasks. However, such methods often face substantial performance-drop difficulties. Fortunately, we found that there exist amounts of image-based datasets and an alternative can be proposed, i.e., transferring the knowledge in the 2D images to 3D point clouds. Specifically, we propose a novel approach for the challenging cross-modal and cross-domain adaptation task by fully exploring the relationship between images and point clouds and designing effective feature alignment strategies. Without any 3D labels, our method achieves state-of-the-art performance for 3D point cloud semantic segmentation on SemanticKITTI by using the knowledge of KITTI360 and GTA5, compared to existing unsupervised and weakly-supervised baselines.Comment: 12 pages,4 figures,accepte

    Improving Multimodal Datasets with Image Captioning

    Full text link
    Massive web datasets play a key role in the success of large vision-language models like CLIP and Flamingo. However, the raw web data is noisy, and existing filtering methods to reduce noise often come at the expense of data diversity. Our work focuses on caption quality as one major source of noise, and studies how generated captions can increase the utility of web-scraped datapoints with nondescript text. Through exploring different mixing strategies for raw and generated captions, we outperform the best filtering method proposed by the DataComp benchmark by 2% on ImageNet and 4% on average across 38 tasks, given a candidate pool of 128M image-text pairs. Our best approach is also 2x better at Flickr and MS-COCO retrieval. We then analyze what makes synthetic captions an effective source of text supervision. In experimenting with different image captioning models, we also demonstrate that the performance of a model on standard image captioning benchmarks (e.g., NoCaps CIDEr) is not a reliable indicator of the utility of the captions it generates for multimodal training. Finally, our experiments with using generated captions at DataComp's large scale (1.28B image-text pairs) offer insights into the limitations of synthetic text, as well as the importance of image curation with increasing training data quantity

    ANALISIS ADOPSI E-COMMERCE TERHADAP KINERJA UMKM DESA PLERET

    Get PDF
    The spread of Covid-19 has had a negative impact on the business world, both small, medium and large scale. One of the strategies to deal with the impact of Covid-19 for SMEs is by adapting to technological advances 4.0 in order to keep up with the times.The main purpose of this study is to find out how the adoption of e-commerce in MSMEs in Pleret Village. In addition, to analyze the impact of adoption on the performance of SMEs. The approach used in this research is descriptive exploratory with the aim of exploring the field of study. The data analysis technique used was thematic analysis (Data Collection, Data Reduction, Data Presentation, Conclusions).The results of this study indicate that technology, organizational and environmental are factors that influence the adoption of e-commerce. However, the most dominant factor is the technology factor. As for the factors that affect the performance of MSMEs are increased sales, increased capital, increased labor, and increased profits, as well as an increase in the market. However, the most dominant factor of the impact of e-commerce adoption is sales growth

    Multilevel latent class analysis for large-scale educational assessment data: Exploring the relation between the curriculum and students' mathematical strategies

    Get PDF
    A ïŹrst application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint inïŹ‚uence of teacher and student variables. Using data from the 2011 assessment of Dutch primary schools’ mathematics, this study explores the relation between the curriculum as reported by 107 teachers and the strategy choices of their 1,619 students, while controlling for student characteristics. Considerable teacher effects are demonstrated, as well as signiïŹcant relations between the intended as well as enacted curriculum and students’ strategy use. Implications of these results for both more theoretical and practical educational research are discussed, as are several issues in applying MLCA and possibilities for applying MLCA to different types of educational data.Development Psychopathology in context: schoo

    Optimizing Genomic-Enabled Prediction in Small-Scale Maize Hybrid Breeding Programs: A Roadmap Review

    Get PDF
    The usefulness of genomic prediction (GP) for many animal and plant breeding programs has been highlighted for many studies in the last 20 years. In maize breeding programs, mostly dedicated to delivering more highly adapted and productive hybrids, this approach has been proved successful for both large- and small-scale breeding programs worldwide. Here, we present some of the strategies developed to improve the accuracy of GP in tropical maize, focusing on its use under low budget and small-scale conditions achieved for most of the hybrid breeding programs in developing countries. We highlight the most important outcomes obtained by the University of São Paulo (USP, Brazil) and how they can improve the accuracy of prediction in tropical maize hybrids. Our roadmap starts with the efforts for germplasm characterization, moving on to the practices for mating design, and the selection of the genotypes that are used to compose the training population in field phenotyping trials. Factors including population structure and the importance of non-additive effects (dominance and epistasis) controlling the desired trait are also outlined. Finally, we explain how the source of the molecular markers, environmental, and the modeling of genotype–environment interaction can affect the accuracy of GP. Results of 7 years of research in a public maize hybrid breeding program under tropical conditions are discussed, and with the great advances that have been made, we find that what is yet to come is exciting. The use of open-source software for the quality control of molecular markers, implementing GP, and envirotyping pipelines may reduce costs in an efficient computational manner. We conclude that exploring new models/tools using high-throughput phenotyping data along with large-scale envirotyping may bring more resolution and realism when predicting genotype performances. Despite the initial costs, mostly for genotyping, the GP platforms in combination with these other data sources can be a cost-effective approach for predicting the performance of maize hybrids for a large set of growing conditions
    • 

    corecore