900 research outputs found

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    ENABLING TECHNOLOGY FOR WIRELESS POWER TRANSMISSION SUPPLY TO REMOTE EQUIPMENT IN CRITICAL LOGISTIC SCENARIOS

    Get PDF
    In this work were reviewed various issues concerning the supply of electrical and electronic equipment in presence of not wired physical scenarios have been reviewed. Possible solutions have been examined, in particular, the WPT solution one. Different technologies have been analyzed, with particular attention to resonant inductive type, examining applications and study approaches, as well as the pros and cons. Different prototypes have been studied, time after time, simulated designed and manufactured; these prototypes made possible the use of several methods of characterization. Finally an application, based on the same technology, for sensing purposes, specifically ground monitoring, has been optimized

    Research and Creative Activity, July 1, 2016-June 30, 2017: Major Sponsored Programs and Faculty Awards for Research and Creative Activity, University of Nebraska-Lincoln

    Get PDF
    Introduction by Steve Goddard, Interim Vice Chancellor for Research and Economic Development, University of Nebraska-Lincoln: This booklet highlights successes in research, scholarship and creative activity of the University of Nebraska–Lincoln faculty during the fiscal year July 1, 2016-June 30, 2017. It lists investigators, project titles and funding sources on major grants and sponsored program awards received during the year; fellowships and other recognitions and honors bestowed on our faculty; books published by faculty; performances, exhibitions and other creative activity by our faculty; and intellectual property licenses and patents issued for the products of Nebraska research. This booklet is an impressive list, but it is far from comprehensive. Nebraska faculty are contributing to the stature and funding of our research, scholarship and creative activity every day, in everything they do. These accomplishments are key measures of our success, but even more important is our faculty’s impact on the world. Our faculty are looking to the future: tackling complex issues, solving global challenges and addressing the needs of the nation and the people of Nebraska. Whether that work is a woodblock print that leads us to consider our role in shaping the natural world, an innovative program to train child care providers, or mentoring a generation of researchers to fight HIV in Africa, impact begins with the first idea, the first grant, the first publication. This is why we continue to invest in new ideas, faculty, facilities and opportunities. These investments of time, energy, creativity and support are fueling our faculty’s pursuit of excellence. I am pleased to present this record of their accomplishments. Contents Awards of 5MillionorMoreAwardsof5 Million or More Awards of 1 Million to 4,999,999Awardsof4,999,999 Awards of 250,000 to 999,999EarlyCareerAwardsArtsandHumanitiesAwardsof999,999 Early Career Awards Arts and Humanities Awards of 250,000 or More Arts and Humanities Awards of 50,000to50,000 to 249,999 Arts and Humanities Awards of 5,000to5,000 to 49,999 Patents License Agreements Creative Activity Books Recognitions and Honors 64 Glossar

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Designing the Undersea Internet of Things (IoT) and Machine-to-Machine (M2M) Communications Using UnderWater Acoustic MIMO Networks

    Get PDF
    This review paper tries to assess the spectral-efficient (SE) and energy-efficient (EE) performance of underwater acoustic multiple-input multiple-output (UWA/MIMO) networks. Since UWA/MIMO networks define the cutting-edge communications platform of the future’s undersea IoT and M2M networks, the factors that influence their SE and EE performance are thoroughly examined in this paper.The contribution of this paper is three-fold. First, the performance of UWA/MIMO networks is studied with regard to appropriate transmission, SE and EE metrics. The SE and EE performance of these networks drastically depends on the used frequency band, the transmitted power, the MIMO scheme properties, the power consumption profile of the deployed UWA system equipment and the topological characteristics of MIMO configurations. In order to achieve the transition from traditional UWA single-input single-output (UWA/SISO) networks to UWA/MIMO networks, a new singular value decomposition MIMO (SVD/MIMO) module, which also permits the theoretical computation of the aforementioned transmission, SE and EE metrics in UWA networks, is first presented. Second, based on the aforementioned transmission, SE and EE metrics, a SE/EE trade-off relation is proposed in order to investigate the combined SE and EE performance of UWA/MIMO networks. On the basis of this SE/EE trade-off relation, it is first revealed that today’s UWA system equipment cannot support the further IoT broadband exploitation with satisfactory EE performance. Third, the concepts of multi-hop UWA communications and standard UWA topologies are outlined and promoted so that further SE and EE improvement can concurrently occur. These concepts are quantitatively validated by the SE and EE metrics as well as the SE/EE trade-off curves.Based on the findings of this paper, suitable transmitted power levels and better design of UWA/MIMO configurations are promoted so that: (i) SE and EE requirements can be satisfied at will; and (ii) EE-oriented high-bitrate M2M communications network design can be established.Citation: Lazaropoulos, A. G. (2016). "Designing the Undersea Internet of Things (IoT) and Machine-to-Machine (M2M) Communications Using UnderWater Acoustic MIMO Networks." Trends in Renewable Energy, 2(1), 13-50. DOI: 10.17737/tre.2016.2.1.001

    Infrastructure Design, Signalling and Security in Railway

    Get PDF
    Railway transportation has become one of the main technological advances of our society. Since the first railway used to carry coal from a mine in Shropshire (England, 1600), a lot of efforts have been made to improve this transportation concept. One of its milestones was the invention and development of the steam locomotive, but commercial rail travels became practical two hundred years later. From these first attempts, railway infrastructures, signalling and security have evolved and become more complex than those performed in its earlier stages. This book will provide readers a comprehensive technical guide, covering these topics and presenting a brief overview of selected railway systems in the world. The objective of the book is to serve as a valuable reference for students, educators, scientists, faculty members, researchers, and engineers

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Detection and Localization of Leaks in Water Networks

    Get PDF
    Today, 844 million humans around the world have no access to safe drinking water. Furthermore, every 90 seconds, one child dies from water-related illnesses. Major cities lose 15% - 50% of their water and, in some cases, losses may reach up to 70%, mostly due to leaks. Therefore, it is paramount to preserve water as an invaluable resource through water networks, particularly in large cities in which leak repair may cause disruption. Municipalities usually tackle leak problems using various detection systems and technologies, often long after leaks occur; however, such efforts are not enough to detect leaks at early stages. Therefore, the main objectives of the present research are to develop and validate a leak detection system and to optimize leak repair prioritization. The development of the leak detection models goes through several phases: (1) technology and device selection, (2) experimental work, (3) signal analysis, (4) selection of parameters, (5) machine learning model development and (6) validation of developed models. To detect leaks, vibration signals are collected through a variety of controlled experiments on PVC and ductile iron pipelines using wireless accelerometers, i.e., micro-electronic mechanical sensors (MEMS). The signals are analyzed to pinpoint leaks in water pipelines. Similarly, acoustic signals are collected from a pilot project in the city of Montreal, using noise loggers as another detection technology. The collected signals are also analyzed to detect and pinpoint the leaks. The leak detection system has presented promising results using both technologies. The developed MEMS model is capable of accurately pinpointing leaks within 12 centimeters from the exact location. Comparatively, for noise loggers, the developed model can detect the exact leak location within a 25-cm radius for an actual leak. The leak repair prioritization model uses two optimization techniques: (1) a well-known genetic algorithm and (2) a newly innovative Lazy Serpent Algorithm that is developed in the present research. The Lazy Serpent Algorithm has proved capable of surpassing the genetic algorithm in determining a more optimal schedule using much less computation time. The developed research proves that automated real-time leak detection is possible and can help governments save water resource and funds. The developed research proves the viability of accelerometers as a standalone leak detection technology and opens the door for further research and experimentations. The leak detection system model helps municipalities and water resource agencies rapidly detect leaks when they occur in real-time. The developed pinpointing models facilitate the leak repair process by precisely determine the leak location where the repair works should be conducted. The Lazy Serpent Algorithm helps municipalities better distribute their resources to maximize their desired benefits
    corecore