80,634 research outputs found

    Selfishness Level of Strategic Games

    Get PDF
    We introduce a new measure of the discrepancy in strategic games between the social welfare in a Nash equilibrium and in a social optimum, that we call selfishness level. It is the smallest fraction of the social welfare that needs to be offered to each player to achieve that a social optimum is realized in a pure Nash equilibrium. The selfishness level is unrelated to the price of stability and the price of anarchy and is invariant under positive linear transformations of the payoff functions. Also, it naturally applies to other solution concepts and other forms of games. We study the selfishness level of several well-known strategic games. This allows us to quantify the implicit tension within a game between players' individual interests and the impact of their decisions on the society as a whole. Our analyses reveal that the selfishness level often provides a deeper understanding of the characteristics of the underlying game that influence the players' willingness to cooperate. In particular, the selfishness level of finite ordinal potential games is finite, while that of weakly acyclic games can be infinite. We derive explicit bounds on the selfishness level of fair cost sharing games and linear congestion games, which depend on specific parameters of the underlying game but are independent of the number of players. Further, we show that the selfishness level of the nn-players Prisoner's Dilemma is c/(b(n1)c)c/(b(n-1)-c), where bb and cc are the benefit and cost for cooperation, respectively, that of the nn-players public goods game is (1cn)/(c1)(1-\frac{c}{n})/(c-1), where cc is the public good multiplier, and that of the Traveler's Dilemma game is 12(b1)\frac{1}{2}(b-1), where bb is the bonus. Finally, the selfishness level of Cournot competition (an example of an infinite ordinal potential game, Tragedy of the Commons, and Bertrand competition is infinite.Comment: 34 page

    Sharing of Unlicensed Spectrum by Strategic Operators

    Full text link
    Facing the challenge of meeting ever-increasing demand for wireless data, the industry is striving to exploit large swaths of spectrum which anyone can use for free without having to obtain a license. Major standards bodies are currently considering a proposal to retool and deploy Long Term Evolution (LTE) technologies in unlicensed bands below 6 GHz. This paper studies the fundamental questions of whether and how the unlicensed spectrum can be shared by intrinsically strategic operators without suffering from the tragedy of the commons. A class of general utility functions is considered. The spectrum sharing problem is formulated as a repeated game over a sequence of time slots. It is first shown that a simple static sharing scheme allows a given set of operators to reach a subgame perfect Nash equilibrium for mutually beneficial sharing. The question of how many operators will choose to enter the market is also addressed by studying an entry game. A sharing scheme which allows dynamic spectrum borrowing and lending between operators is then proposed to address time-varying traffic and proved to achieve perfect Bayesian equilibrium. Numerical results show that the proposed dynamic sharing scheme outperforms static sharing, which in turn achieves much higher revenue than uncoordinated full-spectrum sharing. Implications of the results to the standardization and deployment of LTE in unlicensed bands (LTE-U) are also discussed.Comment: To appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Game Theory for Network

    The UN in the lab

    Get PDF
    We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy

    Applications of negotiation theory to water issues

    Get PDF
    The authors review the applications of noncooperative bargaining theory to waterrelated issues-which fall in the category of formal models of negotiation. They aim to identify the conditions under which agreements are likely to emerge and their characteristics, to support policymakers in devising the"rules of the game"that could help obtain a desired result. Despite the fact that allocation of natural resources, especially trans-boundary allocation, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, the authors first discuss the noncooperative bargaining models applied to water allocation problems found in the literature. Key findings include the important role noncooperative negotiations can play in cases where binding agreements cannot be signed; the value added of politically and socially acceptable compromises; and the need for a negotiated model that considers incomplete information over the negotiated resource.Water Supply and Sanitation Governance and Institutions,Town Water Supply and Sanitation,Water and Industry,Environmental Economics&Policies,Water Conservation

    Applications of negotiation theory to water issues

    Get PDF
    The purpose of the paper is to review the applications of non-cooperative bargaining theory to water related issues – which fall in the category of formal models of negotiation. The ultimate aim is that of, on the one hand, identify the conditions under which agreements are likely to emerge, and their characteristics; and, on the other hand, to support policy makers in devising the “rules of the game” that could help obtain a desired result. Despite the fact that allocation of natural resources, especially of trans-boundary nature, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, this paper first discusses the noncooperative bargaining models applied to water allocation problems found in the literature. Particular attention will be given to those directly modelling the process of negotiation, although some attempts at finding strategies to maintain the efficient allocation solution will also be illustrated. In addition, this paper will focus on Negotiation Support Systems (NSS), developed to support the process of negotiation. This field of research is still relatively new, however, and NSS have not yet found much use in real life negotiation. The paper will conclude by highlighting the key remaining gaps in the literature.Negotiation theory, Bragaining, Coalitions, Fairness, Agreements

    Cooperative game theory and its application to natural, environmental, and water resource issues : 1. basic theory

    Get PDF
    Game theory provides useful insights into the way parties that share a scarce resource may plan their use of the resource under different situations. This review provides a brief and self-contained introduction to the theory of cooperative games. It can be used to get acquainted with the basics of cooperative games. Its goal is also to provide a basic introduction to this theory, in connection with a couple of surveys that analyze its use in the context of environmental problems and models. The main models (bargaining games, transfer utility, and non-transfer utility games) and issues and solutions are considered: bargaining solutions, single-value solutions like the Shapley value and the nucleolus, and multi-value solutions such as the core. The cooperative game theory (CGT) models that are reviewed in this paper favor solutions that include all possible players and ignore the strategic stages leading to coalition building. They focus on the possible results of the cooperation by answering questions such as: Which coalitions can be formed? And how can the coalitional gains be divided to secure a sustainable agreement? An important aspect associated with the solution concepts of CGT is the equitable and fair sharing of the cooperation gains.Environmental Economics&Policies,Economic Theory&Research,Livestock&Animal Husbandry,Education for the Knowledge Economy,Education for Development (superceded)

    Applications of Negotiation Theory to Water Issues

    Get PDF
    The purpose of the paper is to review the applications of non-cooperative bargaining theory to water related issues – which fall in the category of formal models of negotiation. The ultimate aim is that to, on the one hand, identify the conditions under which agreements are likely to emerge, and their characteristics; and, on the other hand, to support policy makers in devising the “rules of the game” that could help obtain a desired result. Despite the fact that allocation of natural resources, especially of trans-boundary nature, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, this paper first discusses the non-cooperative bargaining models applied to water allocation problems found in the literature. Particular attention will be given to those directly modelling the process of negotiation, although some attempts at finding strategies to maintain the efficient allocation solution will also be illustrated. In addition, this paper will focus on Negotiation Support Systems (NSS), developed to support the process of negotiation. This field of research is still relatively new, however, and NSS have not yet found much use in real life negotiation. The paper will conclude by highlighting the key remaining gaps in the literature.Negotiation theory, Water, Agreeements, Stochasticity, Stakeholders

    Games for Cybersecurity Decision-making

    Get PDF
    corecore