2,596 research outputs found

    Measuring Interventional Robustness in Reinforcement Learning

    Full text link
    Recent work in reinforcement learning has focused on several characteristics of learned policies that go beyond maximizing reward. These properties include fairness, explainability, generalization, and robustness. In this paper, we define interventional robustness (IR), a measure of how much variability is introduced into learned policies by incidental aspects of the training procedure, such as the order of training data or the particular exploratory actions taken by agents. A training procedure has high IR when the agents it produces take very similar actions under intervention, despite variation in these incidental aspects of the training procedure. We develop an intuitive, quantitative measure of IR and calculate it for eight algorithms in three Atari environments across dozens of interventions and states. From these experiments, we find that IR varies with the amount of training and type of algorithm and that high performance does not imply high IR, as one might expect.Comment: 17 pages, 13 figure

    The AI Revolution: Opportunities and Challenges for the Finance Sector

    Full text link
    This report examines Artificial Intelligence (AI) in the financial sector, outlining its potential to revolutionise the industry and identify its challenges. It underscores the criticality of a well-rounded understanding of AI, its capabilities, and its implications to effectively leverage its potential while mitigating associated risks. The potential of AI potential extends from augmenting existing operations to paving the way for novel applications in the finance sector. The application of AI in the financial sector is transforming the industry. Its use spans areas from customer service enhancements, fraud detection, and risk management to credit assessments and high-frequency trading. However, along with these benefits, AI also presents several challenges. These include issues related to transparency, interpretability, fairness, accountability, and trustworthiness. The use of AI in the financial sector further raises critical questions about data privacy and security. A further issue identified in this report is the systemic risk that AI can introduce to the financial sector. Being prone to errors, AI can exacerbate existing systemic risks, potentially leading to financial crises. Regulation is crucial to harnessing the benefits of AI while mitigating its potential risks. Despite the global recognition of this need, there remains a lack of clear guidelines or legislation for AI use in finance. This report discusses key principles that could guide the formation of effective AI regulation in the financial sector, including the need for a risk-based approach, the inclusion of ethical considerations, and the importance of maintaining a balance between innovation and consumer protection. The report provides recommendations for academia, the finance industry, and regulators

    ProtoX: Explaining a Reinforcement Learning Agent via Prototyping

    Full text link
    While deep reinforcement learning has proven to be successful in solving control tasks, the "black-box" nature of an agent has received increasing concerns. We propose a prototype-based post-hoc policy explainer, ProtoX, that explains a blackbox agent by prototyping the agent's behaviors into scenarios, each represented by a prototypical state. When learning prototypes, ProtoX considers both visual similarity and scenario similarity. The latter is unique to the reinforcement learning context, since it explains why the same action is taken in visually different states. To teach ProtoX about visual similarity, we pre-train an encoder using contrastive learning via self-supervised learning to recognize states as similar if they occur close together in time and receive the same action from the black-box agent. We then add an isometry layer to allow ProtoX to adapt scenario similarity to the downstream task. ProtoX is trained via imitation learning using behavior cloning, and thus requires no access to the environment or agent. In addition to explanation fidelity, we design different prototype shaping terms in the objective function to encourage better interpretability. We conduct various experiments to test ProtoX. Results show that ProtoX achieved high fidelity to the original black-box agent while providing meaningful and understandable explanations

    IxDRL: A Novel Explainable Deep Reinforcement Learning Toolkit based on Analyses of Interestingness

    Full text link
    In recent years, advances in deep learning have resulted in a plethora of successes in the use of reinforcement learning (RL) to solve complex sequential decision tasks with high-dimensional inputs. However, existing systems lack the necessary mechanisms to provide humans with a holistic view of their competence, presenting an impediment to their adoption, particularly in critical applications where the decisions an agent makes can have significant consequences. Yet, existing RL-based systems are essentially competency-unaware in that they lack the necessary interpretation mechanisms to allow human operators to have an insightful, holistic view of their competency. Towards more explainable Deep RL (xDRL), we propose a new framework based on analyses of interestingness. Our tool provides various measures of RL agent competence stemming from interestingness analysis and is applicable to a wide range of RL algorithms, natively supporting the popular RLLib toolkit. We showcase the use of our framework by applying the proposed pipeline in a set of scenarios of varying complexity. We empirically assess the capability of the approach in identifying agent behavior patterns and competency-controlling conditions, and the task elements mostly responsible for an agent's competence, based on global and local analyses of interestingness. Overall, we show that our framework can provide agent designers with insights about RL agent competence, both their capabilities and limitations, enabling more informed decisions about interventions, additional training, and other interactions in collaborative human-machine settings.Comment: To be published in the Proceedings of the 1st World Conference on eXplainable Artificial Intelligence (xAI 2023). arXiv admin note: substantial text overlap with arXiv:2211.0637

    EVALUATING ARTIFICIAL INTELLIGENCE METHODS FOR USE IN KILL CHAIN FUNCTIONS

    Get PDF
    Current naval operations require sailors to make time-critical and high-stakes decisions based on uncertain situational knowledge in dynamic operational environments. Recent tragic events have resulted in unnecessary casualties, and they represent the decision complexity involved in naval operations and specifically highlight challenges within the OODA loop (Observe, Orient, Decide, and Assess). Kill chain decisions involving the use of weapon systems are a particularly stressing category within the OODA loop—with unexpected threats that are difficult to identify with certainty, shortened decision reaction times, and lethal consequences. An effective kill chain requires the proper setup and employment of shipboard sensors; the identification and classification of unknown contacts; the analysis of contact intentions based on kinematics and intelligence; an awareness of the environment; and decision analysis and resource selection. This project explored the use of automation and artificial intelligence (AI) to improve naval kill chain decisions. The team studied naval kill chain functions and developed specific evaluation criteria for each function for determining the efficacy of specific AI methods. The team identified and studied AI methods and applied the evaluation criteria to map specific AI methods to specific kill chain functions.Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCaptain, United States Marine CorpsCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Human-centered Explainable AI: Towards a Reflective Sociotechnical Approach

    Full text link
    Explanations--a form of post-hoc interpretability--play an instrumental role in making systems accessible as AI continues to proliferate complex and sensitive sociotechnical systems. In this paper, we introduce Human-centered Explainable AI (HCXAI) as an approach that puts the human at the center of technology design. It develops a holistic understanding of "who" the human is by considering the interplay of values, interpersonal dynamics, and the socially situated nature of AI systems. In particular, we advocate for a reflective sociotechnical approach. We illustrate HCXAI through a case study of an explanation system for non-technical end-users that shows how technical advancements and the understanding of human factors co-evolve. Building on the case study, we lay out open research questions pertaining to further refining our understanding of "who" the human is and extending beyond 1-to-1 human-computer interactions. Finally, we propose that a reflective HCXAI paradigm-mediated through the perspective of Critical Technical Practice and supplemented with strategies from HCI, such as value-sensitive design and participatory design--not only helps us understand our intellectual blind spots, but it can also open up new design and research spaces.Comment: In Proceedings of HCI International 2020: 22nd International Conference On Human-Computer Interactio
    • …
    corecore