1,567 research outputs found

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    Contingency Management in Power Systems and Demand Response Market for Ancillary Services in Smart Grids with High Renewable Energy Penetration.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Policy and regulatory barriers to local energy markets in Great Britain

    Get PDF
    EPG Working Paper: EPG 1801The requirement to decarbonise the GB electricity system, alongside the falling costs of renewable technologies and developments in IT capabilities, provides GB with an opportunity for systemic change in the way that electricity is produced and sold, with the potential to enable flexibility markets at the local level given the correct regulatory conditions. The report highlights a range of regulatory and policy barriers to the Local Energy Market (LEM) approach

    Business Models for SEEV4-City Operational Pilots: From a generic SEEV4-City business model towards improved specific OP business models

    Get PDF
    This report, led by Northumbria University, provides a final analysis by project partners regarding Business Models for SEEV4-City Operational pilots. It is part of a collection of reports published by the project covering a variation of specific and cross-cutting analysis and evaluation perspectives and spans 6 operational pilots

    Integration of DERs in the Aggregator Platform for the Optimal Participation in Wholesale and Local Electricity Markets

    Get PDF
    Aging and abnormal stresses cause insulation degradation in underground cables, reducing their in-service lifetime. Partial discharge (PD) monitoring is an effective tool to monitor the insulation condition. For growing networks, monitoring solutions need more efficient diagnostics, particularly to classify PD activity by source type. One bottleneck here is feature extraction, for which many computationally expensive techniques have been proposed. This paper presents a more efficient approach, enabling real-time PD classification at high classification performance. It is applied to phase resolved PD cycles, measured on a medium voltage cable in a laboratory environment, containing either internal, corona, or surface discharge activity.©2021 IET. This paper is a postprint of a paper submitted to and accepted for publication in CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.fi=vertaisarvioitu|en=peerReviewed

    Heuristic optimization of clusters of heat pumps: A simulation and case study of residential frequency reserve

    Get PDF
    The technological challenges of adapting energy systems to the addition of more renewables are intricately interrelated with the ways in which markets incentivize their development and deployment. Households with own onsite distributed generation augmented by electrical and thermal storage capacities (prosumers), can adjust energy use based on the current needs of the electricity grid. Heat pumps, as an established technology for enhancing energy efficiency, are increasingly seen as having potential for shifting electricity use and contributing to Demand Response (DR). Using a model developed and validated with monitoring data of a household in a plus-energy neighborhood in southern Germany, the technical and financial viability of utilizing household heat pumps to provide power in the market for Frequency Restoration Reserve (FRR) are studied. The research aims to evaluate the flexible electrical load offered by a cluster of buildings whose heat pumps are activated depending on selected rule-based participation strategies. Given the prevailing prices for FRR in Germany, the modelled cluster was unable to reduce overall electricity costs and thus was unable to show that DR participation as a cluster with the heat pumps is financially viable. Five strategies that differed in the respective contractual requirements that would need to be agreed upon between the cluster manager and the aggregator were studied. The relatively high degree of flexibility necessary for the heat pumps to participate in FRR activations could be provided to varying extents in all strategies, but the minimum running time of the heat pumps turned out to be the primary limiting physical (and financial) factor. The frequency, price and duration of the activation calls from the FRR are also vital to compensate the increase of the heat pumps’ energy use. With respect to thermal comfort and self-sufficiency constraints, the buildings were only able to accept up to 34% of the activation calls while remaining within set comfort parameters. This, however, also depends on the characteristics of the buildings. Finally, a sensitivity analysis showed that if the FRR market changed and the energy prices were more advantageous, the proposed approaches could become financially viable. This work suggests the need for further study of the role of heat pumps in flexibility markets and research questions concerning the aggregation of local clusters of such flexible technologies.Comisión Europea 69596

    Evolution of the Electricity Distribution Networks : Active Management Architecture Schemes and Microgrid Control Functionalities

    Get PDF
    The power system transition to smart grids brings challenges to electricity distribution network development since it involves several stakeholders and actors whose needs must be met to be successful for the electricity network upgrade. The technological challenges arise mainly from the various distributed energy resources (DERs) integration and use and network optimization and security. End-customers play a central role in future network operations. Understanding the network’s evolution through possible network operational scenarios could create a dedicated and reliable roadmap for the various stakeholders’ use. This paper presents a method to develop the evolving operational scenarios and related management schemes, including microgrid control functionalities, and analyzes the evolution of electricity distribution networks considering medium and low voltage grids. The analysis consists of the dynamic descriptions of network operations and the static illustrations of the relationships among classified actors. The method and analysis use an object-oriented and standardized software modeling language, the unified modeling language (UML). Operational descriptions for the four evolution phases of electricity distribution networks are defined and analyzed by Enterprise Architect, a UML tool. This analysis is followed by the active management architecture schemes with the microgrid control functionalities. The graphical models and analysis generated can be used for scenario building in roadmap development, real-time simulations, and management system development. The developed method, presented with high-level use cases (HL-UCs), can be further used to develop and analyze several parallel running control algorithms for DERs providing ancillary services (ASs) in the evolving electricity distribution networks.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Optimal strategy of electricity and natural gas aggregators in the energy and balance markets

    Get PDF
    This paper presents a stochastic two-stage model for energy aggregators (EAs) in the energy and balancing markets to supply electricity and natural gas to end-users equipped with combined heat and power (CHP) units. The suggested model takes into account the battery energy storage (BES) as a self-generating unit of EA. The upper and lower subproblems determine the optimal energy supply strategy of EA and consumption of consumers, respectively. In the lower subproblem, the McCormick relaxation is used to linearize the cost function of the CHP unit. To solve the proposed model, the two-stage problem is transformed into a linear single-stage problem using the KKT conditions of the lower subproblem, the Big M method, and the strong duality theory. The performance and efficiency of the proposed model are evaluated using a case study and three scenarios. According to the simulation results, adding CHP units to the energy-scheduling problem of BES-owned aggregators increases the profit of EA by 5.96% and decreases the cost of consumers by 1.57%.This work has received funding from the EU Horizon 2020 research and innovation program under project TradeRES (grant agreement No 864276). Pedro Faria is supported by FCT, grant CEECIND/01423/2021. The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/ 2020) to the project team.info:eu-repo/semantics/publishedVersio
    corecore