399 research outputs found

    Localization-delocalization transition on a separatrix system of nonlinear Schrodinger equation with disorder

    Full text link
    Localization-delocalization transition in a discrete Anderson nonlinear Schr\"odinger equation with disorder is shown to be a critical phenomenon - similar to a percolation transition on a disordered lattice, with the nonlinearity parameter thought as the control parameter. In vicinity of the critical point the spreading of the wave field is subdiffusive in the limit t+t\rightarrow+\infty. The second moment grows with time as a powerlaw tα\propto t^\alpha, with α\alpha exactly 1/3. This critical spreading finds its significance in some connection with the general problem of transport along separatrices of dynamical systems with many degrees of freedom and is mathematically related with a description in terms fractional derivative equations. Above the delocalization point, with the criticality effects stepping aside, we find that the transport is subdiffusive with α=2/5\alpha = 2/5 consistently with the results from previous investigations. A threshold for unlimited spreading is calculated exactly by mapping the transport problem on a Cayley tree.Comment: 6 pages, 1 figur

    A topological approximation of the nonlinear Anderson model

    Full text link
    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrodinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance-overlap in phase space, ranging from a fully developed chaos involving Levy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on a Cayley tree. It is found in vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t\rightarrow+\infty. The second moment grows with time as a powerlaw t^\alpha, with \alpha = 1/3. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of stripes propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.Comment: 20 pages, 2 figures; improved text with revisions; accepted for publication in Physical Review

    Theoretical Analysis and Circuit Verification for Fractional-Order Chaotic Behavior in a New Hyperchaotic System

    Get PDF
    A novel nonlinear four-dimensional hyperchaotic system and its fractional-order form are presented. Some dynamical behaviors of this system are further investigated, including Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations, and calculated Lyapunov exponents. A simple fourth-channel block circuit diagram is designed for generating strange attractors of this dynamical system. Specifically, a novel network module fractance is introduced to achieve fractional-order circuit diagram for hardware implementation of the fractional attractors of this nonlinear hyperchaotic system with order as low as 0.9. Observation results have been observed by using oscilloscope which demonstrate that the fractional-order nonlinear hyperchaotic attractors exist indeed in this new system

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    On the Application of PSpice for Localised Cloud Security

    Get PDF
    The work reported in this thesis commenced with a review of methods for creating random binary sequences for encoding data locally by the client before storing in the Cloud. The first method reviewed investigated evolutionary computing software which generated noise-producing functions from natural noise, a highly-speculative novel idea since noise is stochastic. Nevertheless, a function was created which generated noise to seed chaos oscillators which produced random binary sequences and this research led to a circuit-based one-time pad key chaos encoder for encrypting data. Circuit-based delay chaos oscillators, initialised with sampled electronic noise, were simulated in a linear circuit simulator called PSpice. Many simulation problems were encountered because of the nonlinear nature of chaos but were solved by creating new simulation parts, tools and simulation paradigms. Simulation data from a range of chaos sources was exported and analysed using Lyapunov analysis and identified two sources which produced one-time pad sequences with maximum entropy. This led to an encoding system which generated unlimited, infinitely-long period, unique random one-time pad encryption keys for plaintext data length matching. The keys were studied for maximum entropy and passed a suite of stringent internationally-accepted statistical tests for randomness. A prototype containing two delay chaos sources initialised by electronic noise was produced on a double-sided printed circuit board and produced more than 200 Mbits of OTPs. According to Vladimir Kotelnikov in 1941 and Claude Shannon in 1945, one-time pad sequences are theoretically-perfect and unbreakable, provided specific rules are adhered to. Two other techniques for generating random binary sequences were researched; a new circuit element, memristance was incorporated in a Chua chaos oscillator, and a fractional-order Lorenz chaos system with order less than three. Quantum computing will present many problems to cryptographic system security when existing systems are upgraded in the near future. The only existing encoding system that will resist cryptanalysis by this system is the unconditionally-secure one-time pad encryption

    On the outer synchronization of complex dynamical networks

    Get PDF
    Complex network models have become a major tool in the modeling and analysis of many physical, biological and social phenomena. A complex network exhibits behaviors which emerge as a consequence of interactions between its constituent elements, that is, remarkably, not the same as individual components. One particular topic that has attracted the researchers' attention is the analysis of how synchronization occurs in this class of models, with the expectation of gaining new insights of the interactions taking place in real-world complex systems. Most of the work in the literature so far has been focused on the synchronization of a collection of interconnected nodes (forming one single network), where each node is a dynamical system governed by a set of nonlinear differential equations, possibly displaying chaotic dynamics. In this thesis, we study an extended version of this problem. In particular, we consider a setup consisting of two complex networks which are coupled unidirectionally, in such a way that a set of signals from the master network are injected into the response network, and then investigate how synchronization is attained. Our analysis is fairly general. We impose few conditions on the network structure and do not assume that the nodes in a single network are synchronized. This work can be divided into two main parts; outer synchronization in fractional-order networks, and outer synchronization in ordinary networks. In both cases the system parameters are perturbed by bounded, time varying and unknown perturbations. The synchronizer feedback matrix is possibly perturbed with the same type of perturbations as well. In both cases, of fractional-order and ordinary networks, we build up several theorems that ensure the attainment of synchronization in various scenarios, including, e.g., cases in which the coupling matrix of the networks is non-diffusive (hence we can avoid this assumption, which is almost invariably made in the literature). In all the cases of interest, we show that the scheme for coupling the networks is very simple, as it reduces to the computation of a single gain matrix whose dimension is independent of the number of network nodes. The structure of the designed synchronizer is also very simple, making it convenient for real-world applications. Although all of the proposed schemes are assessed analytically, numerical results (obtained by computer simulations) are also provided to illustrate the proposed methods. ---------------------------------------Las redes complejas se han convertido en una herramienta fundamental en el análisis de muchos sistemas físicos, biológicos y sociales. Una red compleja presenta comportamientos que "emergen" como consecuencia de las interacciones entre sus elementos constituyentes pero que no se observan de forma individual en estos elementos. Un aspecto en concreto que ha atrapado la atención de muchos investigadores es el análisis de cómo se producen fenómenos de sincronización en esta clase de modelos, con la esperanza de alcanzar una mayor comprensión de las interacciones que tienen lugar en sistemas complejos del mundo real. La mayor parte del trabajo publicado hasta ahora ha estado centrado en la sincronización de una colección de nodos interconectados (que forman una única red con entidad propia), donde cada nodo es un sistema dinámico gobernado por un conjunto de ecuaciones diferenciales no lineales, posiblemente caóticas. En esta tesis estudiamos una versión extendida de este problema. En concreto, consideramos un sistema formado por dos redes complejas acopladas unidireccionalmente, de manera que un conjunto de señales de la red principal se inyectan en la red secundaria, e investigamos cómo se alcanza un estado de sincronización. Este fenómeno se conoce como "sincronización externa". Nuestro análisis es muy general. Se imponen pocas condiciones a las estructura de las redes y no es necesario suponer que los nodos de cada red estén sincronizados entre sí previamente. Esta memoria se puede dividir en dos bloques: la sincronización externa de redes descritas por ecuaciones diferenciales de orden fraccionario y la sincronización externa de redes ordinarias (descritas por ecuaciones diferenciales de orden entero). En ambos casos, se admite que los parámetros del sistema puedan estar sujetos a perturbaciones desconocidas, posiblemente variables con el tiempo, pero acotadas. La matriz de realimentación del esquema de sincronización puede sufrir el mismo tipo de perturbación. En ambos casos, con ecuaciones de orden fraccionario o entero, construimos varios teoremas que aseguran que se alcance la sincronización en escenarios diversos, incluyendo, por ejemplo, casos en los que la matriz de acoplamiento de las redes es no difusiva (por lo tanto, podemos evitar esta hipótesis, que es ubicua en la literatura). En todos los casos de interés, mostramos que el esquema necesario para interconectar las redes es muy simple, puesto que se reduce al cálculo de una única matriz de ganancia cuya dimensión es independiente de la dimensión total (número de nodos) de las redes. La estructura del sincronizados es también muy sencilla, lo que la hace potencialmente adecuada para aplicaciones del mundo real. Aunque todos los esquemas que se proponen se analizan de manera rigurosa, también se muestran resultados numéricos (obtenidos mediante simulación) para ilustrar los métodos propuestos.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ángel María Bravo Santos.- Secretario: David Luengo García.- Vocal: Irene Sendiña Nada
    corecore