46 research outputs found

    Strang splitting in combination with rank-11 and rank-rr lattices for the time-dependent Schr\"odinger equation

    Full text link
    We approximate the solution for the time dependent Schr\"odinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than 9/29/2. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-11 lattice points, the solution can be efficiently computed (and further time stepped) using only 11-dimensional Fast Fourier Transforms.Comment: Modified. 40pages, 5 figures. The proof of Lemma 1 is updated after the paper is publishe

    Multi-level stochastic collocation methods for parabolic and Schrödinger equations

    Get PDF
    In this thesis, we propose, analyse and implement numerical methods for time-dependent non-linear parabolic and Schrödinger-type equations with uncertain parameters. The discretisation of the parameter space which incorporates the uncertainty of the problem is performed via single- and multi-level collocation strategies. To deal with the possibly large dimension of the parameter space, sparse grid collocation techniques are used to alleviate the curse of dimensionality to a certain extent. We prove that the multi-level method is capable of reducing the overall computational costs significantly. In the parabolic case, the time discretisation is performed via an implicit-explicit splitting strategy of order two which consists shortly speaking of a combination of an implicit trapezoidal rule for the stiff linear part and Heun\u27s method for the non-linear part. In the Schrödinger case, time is discretised via the famous second-order Strang splitting method. For both problem classes we review known error bounds for both discretizations and prove new error bounds for the time discretisations which take the regularity in the parameter space into account. In the parabolic case, a new error bound for the "implicit-explicit trapezoidal method" (IMEXT) method is proved. To our knowledge, this error bound stating second-order convergence of the IMEXT method closes a current gap in the literature. Utilising the aforementioned new error bounds for both problem classes, we can rigorously prove convergence of the single- and multi-level methods. Additionally, cost savings of the multi-level methods compared to the single-level approach are predicted and verifed by numerical examples. The results mentioned above are novel contributions in two areas of mathematics. The first one is (analysis of) numerical methods for uncertainty quantification and the second one is numerical analysis of time-integration schemes for PDEs

    Stochastic Galerkin-collocation splitting for PDEs with random parameters

    Get PDF
    We propose a numerical method for time-dependent, semilinear partial differential equations (PDEs) with random parameters and random initial data. The method is based on an operator splitting approach. The linear part of the right-hand side is discretized by a stochastic Galerkin method in the stochastic variables and a pseudospectral method in the physical space, whereas the nonlinear part is approximated by a stochastic collocation method in the stochastic variables. In this setting both parts of the random PDE can be propagated very efficiently. The Galerkin method and the collocation method are combined with sparse grids in order to reduce the computational costs. This approach is discussed in detail for the Lugiato-Lefever equation, which serves as a motivating example throughout, but also applies to a much larger class of random PDEs. For such problems our method is computationally much cheaper than standard stochastic Galerkin methods, and numerical tests show that it outperforms standard stochastic collocation methods, too

    A multi-level stochastic collocation method for Schrödinger equations with a random potential

    Get PDF
    We propose and analyze a numerical method for time-dependent linear Schrödinger equations with uncertain parameters in both the potential and the initial data. The random parameters are discretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are approximated with the Strang splitting method. The computational work is reduced by a multi-level strategy, i.e. by combining information obtained from sample solutions computed on different refinement levels of the discretization. We prove new error bounds for the time discretization which take the finite regularity in the stochastic variable into account, and which are crucial to obtain convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic collocation method are verified by numerical examples

    Exponential integrators: tensor structured problems and applications

    Get PDF
    The solution of stiff systems of Ordinary Differential Equations (ODEs), that typically arise after spatial discretization of many important evolutionary Partial Differential Equations (PDEs), constitutes a topic of wide interest in numerical analysis. A prominent way to numerically integrate such systems involves using exponential integrators. In general, these kinds of schemes do not require the solution of (non)linear systems but rather the action of the matrix exponential and of some specific exponential-like functions (known in the literature as phi-functions). In this PhD thesis we aim at presenting efficient tensor-based tools to approximate such actions, both from a theoretical and from a practical point of view, when the problem has an underlying Kronecker sum structure. Moreover, we investigate the application of exponential integrators to compute numerical solutions of important equations in various fields, such as plasma physics, mean-field optimal control and computational chemistry. In any case, we provide several numerical examples and we perform extensive simulations, eventually exploiting modern hardware architectures such as multi-core Central Processing Units (CPUs) and Graphic Processing Units (GPUs). The results globally show the effectiveness and the superiority of the different approaches proposed

    Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates

    Get PDF
    In this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations. The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations illustrating the strength of the proposed approach

    Trace preserving quantum dynamics using a novel reparametrization-neutral summation-by-parts difference operator

    Full text link
    We develop a novel numerical scheme for the simulation of dissipative quantum dynamics following from two-body Lindblad master equations. All defining continuum properties of the Lindblad dynamics, hermiticity, positivity and in particular trace conservation of the evolved density matrix are preserved. The central ingredient is a new spatial difference operator, which not only fulfils the summation by parts (SBP) property but also implements a continuum reparametrization property. Using the time evolution of a heavy-quark anti-quark bound state in a hot thermal medium as an explicit example, we show how the reparametrization neutral summation-by-parts (RN-SBP) operator preserves the continuum properties of the theory.Comment: 34 pages, 7 figures, open-access code available via https://doi.org/10.5281/zenodo.374446
    corecore