1,457 research outputs found

    Smart Fabric sensors for foot motion monitoring

    Get PDF
    Smart Fabrics or fabrics that have the characteristics of sensors are a wide and emerging field of study. This thesis summarizes an investigation into the development of fabric sensors for use in sensorized socks that can be used to gather real time information about the foot such as gait features. Conventional technologies usually provide 2D information about the foot. Sensorized socks are able to provide angular data in which foot angles are correlated to the output from the sensor enabling 3D monitoring of foot position. Current angle detection mechanisms are mainly heavy and cumbersome; the sensorized socks are not only portable but also non-invasive to the subject who wears them. The incorporation of wireless features into the sensorized socks enabled a remote monitoring of the foot

    A Multi-Modal Sensing Glove for Human Manual-Interaction Studies

    Get PDF
    We present an integrated sensing glove that combines two of the most visionary wearable sensing technologies to provide both hand posture sensing and tactile pressure sensing in a unique, lightweight, and stretchable device. Namely, hand posture reconstruction employs Knitted Piezoresistive Fabrics that allows us to measure bending. From only five of these sensors (one for each finger) the full hand pose of a 19 degrees of freedom (DOF) hand model is reconstructed leveraging optimal sensor placement and estimation techniques. To this end, we exploit a-priori information of synergistic coordination patterns in grasping tasks. Tactile sensing employs a piezoresistive fabric allowing us to measure normal forces in more than 50 taxels spread over the palmar surface of the glove. We describe both sensing technologies, report on the software integration of both modalities, and describe a preliminary evaluation experiment analyzing hand postures and force patterns during grasping. Results of the reconstruction are promising and encourage us to push further our approach with potential applications in neuroscience, virtual reality, robotics and tele-operation

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications

    A Synergy-Based Optimally Designed Sensing Glove for Functional Grasp Recognition

    Get PDF
    Achieving accurate and reliable kinematic hand pose reconstructions represents a challenging task. The main reason for this is the complexity of hand biomechanics, where several degrees of freedom are distributed along a continuous deformable structure. Wearable sensing can represent a viable solution to tackle this issue, since it enables a more natural kinematic monitoring. However, the intrinsic accuracy (as well as the number of sensing elements) of wearable hand pose reconstruction (HPR) systems can be severely limited by ergonomics and cost considerations. In this paper, we combined the theoretical foundations of the optimal design of HPR devices based on hand synergy information, i.e., the inter-joint covariation patterns, with textile goniometers based on knitted piezoresistive fabrics (KPF) technology, to develop, for the first time, an optimally-designed under-sensed glove for measuring hand kinematics. We used only five sensors optimally placed on the hand and completed hand pose reconstruction (described according to a kinematic model with 19 degrees of freedom) leveraging upon synergistic information. The reconstructions we obtained from five different subjects were used to implement an unsupervised method for the recognition of eight functional grasps, showing a high degree of accuracy and robustness

    Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions

    Get PDF
    Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects

    Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements

    Get PDF
    BACKGROUND: The practice of continuous, long-term monitoring of human joint motion is one that finds many applications, especially in the medical and rehabilitation fields. There is a lack of acceptable devices available to perform such measurements in the field in a reliable and non-intrusive way over a long period of time. The purpose of this study was therefore to develop such a wearable joint monitoring sensor capable of continuous, day-to-day monitoring. METHODS: A novel technique of incorporating conductive fibers into flexible, skin-tight fabrics surrounding a joint is developed. Resistance changes across these conductive fibers are measured, and directly related to specific single or multi-axis joint angles through the use of a non-linear predictor after an initial, one-time calibration. Because these sensors are intended for multiple uses, an automated registration algorithm has been devised using a sensitivity template matched to an array of sensors spanning the joints of interest. In this way, a sensor array can be taken off and put back on an individual for multiple uses, with the sensors automatically calibrating themselves each time. RESULTS: The wearable sensors designed are comfortable, and acceptable for long-term wear in everyday settings. Results have shown the feasibility of this type of sensor, with accurate measurements of joint motion for both a single-axis knee joint and a double axis hip joint when compared to a standard goniometer used to measure joint angles. Self-registration of the sensors was found to be possible with only a few simple motions by the patient. CONCLUSION: After preliminary experiments involving a pants sensing garment for lower body monitoring, it has been seen that this methodology is effective for monitoring joint motion of the hip and knee. This design therefore produces a robust, comfortable, truly wearable joint monitoring device

    Daily-Life Monitoring of Stroke Survivors Motor Performance: The INTERACTION Sensing System

    Get PDF
    The objective of the INTERACTION Eu project is to develop and validate an unobtrusive and modular system for monitoring daily life activities, physical interactions with the environment and for training upper and lower extremity motor function in stroke subjects. This paper describes the development and preliminary testing of the project sensing platform made of sensing shirt, trousers, gloves and shoes. Modular prototypes were designed and built considering the minimal set of inertial, force and textile sensors that may enable an efficient monitoring of stroke patients. The single sensing elements are described and the results of their preliminary lab-level testing are reported

    A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors

    Get PDF
    Patient-specific performance assessment of arm movements in daily life activities is fundamental for neurological rehabilitation therapy. In most applications, the shoulder movement is simplified through a socket-ball joint, neglecting the movement of the scapular-thoracic complex. This may lead to significant errors. We propose an innovative bi-articular model of the human shoulder for estimating the position of the hand in relation to the sternum. The model takes into account both the scapular-toracic and gleno-humeral movements and their ratio governed by the scapular-humeral rhythm, fusing the information of inertial and textile-based strain sensors
    • …
    corecore