1,195 research outputs found

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Thermal Performance of a Multi-Axis Smoothing Cell

    Get PDF
    Multi Axis Robots have traditionally been used in industry for pick and place, de-burring, and welding operations. Increasing technological advances have broadened their application and today robots are increasingly being used for higher precision applications in the medical and nuclear sectors. In order to use robots in such roles it is important to understand their performance. Thermal effects in machine tools are acknowledged to account for up to 70% of all errors (Bryan J. , 1990) and therefore need to be considered. This research investigates thermal influences on the accuracy and repeatability of a six degree of freedom robotic arm, which forms an integral part of a smoothing cell. The cell forms part of a process chain currently being developed for the processing of high accuracy freeform surfaces, intended for use on the next generation of ground based telescopes. The robot studied was a FANUC 710i/50 with a lapping spindle the end effector. The robot geometric motions were characterised and the structure was thermally mapped at the latter velocity. The thermal mapping identified the key areas of the robot structure requiring more detailed analysis. Further investigation looked into thermal variations in conjunction with geometric measurements in order to characterise the robot thermal performance. Results showed thermal variations of up to 13ÂșC over a period of six hours, these produced errors of up to 100ÎŒm over the 1300mm working stroke slow. Thermal modelling carried out predicted geometric variation of 70ÎŒm to 122ÎŒm for thermal variations up to 13ÂșC over a period of six hours. The modelling was 50% to 75% efficient in predicting thermal error magnitudes in the X axis. With the geometric and modelling data a recommendation for offline compensation would enable significant improvement in the robots positioning capability to be achieved

    Traceability of on-machine tool measurement: a review

    Get PDF
    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    New optical sensing system applied to taut wire based straightness measurement

    Get PDF
    In modern manufacturing industry, precision components are typically produced on Computer Numerical Controlled (CNC) machine tools which translate their accuracy onto machined parts. This accuracy is affected by a set of different motion errors caused by inherent imperfections in the design and build of the machine, variations in the local environment such as temperature, the cutting process itself and human factors. The reduction of these effects is achieved primarily through design improvements and error compensation techniques. The latter requires detailed knowledge about the existing errors in order to deal with them effectively. This thesis describes a novel sensor system for measurement of errors caused by deviation in the straightness of Cartesian axes present in the structural loop of most machine tools. Currently there are very few methods available to measure straightness directly, each having advantages and disadvantages when considering simplicity, accuracy and affordability. The proposed system uses a taut wire reference with a novel sensor, a two-point technique for reference error cancellation and software to enable fast and accurate measurement of straightness between any two points of the measured machine’s working volume. The standout features of the sensing system include ultra-low cost and high performance when compared with existing state-of-the-art systems. It is capable of measuring a straightness error as low as 3ÎŒm and takes only 2s of dwell time between readings, while laser interferometer requires 4s to perform averaging when measuring the same error. Existing taut wire microscopy is limited by 10-20ÎŒm of measured error depending on optics quality and manual reading takes at least 5s to minimise the human error. Setup time is also different – the new system saves 15 minutes time on 2m axis and more on longer lengths compared the laser due to simpler reference alignment procedure. Theoretical analysis and practical implementation are followed by detailed performance evaluation experiments carried out under typical manufacturing conditions comprising different machine tools, different axes, measured errors, environmental effects and alternative measuring equipment. Tests cover aspects of accuracy, repeatability and overall system stability providing a complete picture of the system’s capability and the method’s potential which is also supported by uncertainty analysis. In addition to defining setup and measuring procedures, a user-friendly software interface is described and its main units are explained with respect to overall measurement efficiency and setup fault detection

    Analysis of an Ultra-precision Positioning System and Parametrization of Its Structural Model for Error Compensation

    Get PDF
    Conventional compensation of position errors of machine tools relies only on measured values. Due to this principle it is not always possible to compensate the errors in time, especially dynamic ones. Moreover, the relevant control variables cannot always be measured directly. Thus, this approach proves to be insufficient for high precision applications. In this context, a model-based error prediction allows for minimal position errors. However, ultra-precision applications set high demands for the models' accuracy. This paper presents the design of an accurate and real time-capable structural model of an ultra-precision positioning system. The modeling method for the developed ultra-precision demonstrator is shown and the initial parameter identification is presented. © 2017 The Authors. Published by Elsevier B.V.DFG/FOR/184

    Traceable onboard metrology for machine tools and large-scale systems

    Get PDF
    Esta tesis doctoral persigue la mejora de las funcionalidades de las måquinas herramienta para la fabricación de componentes de alto valor añadido. En concreto, la tesis se centra en mejorar la precisión de las måquinas herramienta en todo su volumen de trabajo y en desarrollar el conocimiento para realizar la medición por coordenadas trazable con este medio productivo. En realidad, la tecnología para realizar mediciones en måquina herramienta ya estå disponible, como son los palpadores de contacto y los softwares de medición, sin embargo, hay varios factores que limitan la trazabilidad de la medición realizada en condiciones de taller, que no permiten emplear estas medidas para controlar el proceso de fabricación o validar la pieza en la propia måquina-herramienta, asegurando un proceso de fabricación de cero-defectos. Aquí, se propone el empleo del documento técnico ISO 15530-3 para piezas de tamaño medio. Para las piezas de gran tamaño se presenta una nueva metodología basada en la guía VDI 2617-11, que no estå limitada por el empleo de una pieza patrón para caracterizar el error sistemåtico de la medición por coordenadas en la måquina-herramienta. De esta forma, se propone una calibración previa de la måquina-herramienta mediante una solución de multilateración integrada en måquina, que se traduce en la automatización del proceso de verificación y permite reducir el tiempo y la incertidumbre de medida. En paralelo, con el conocimiento generado en la integración de esta solución en la måquina-herramienta, se propone un nuevo procedimiento para la caracterización de la precisión de apunte del telescopio LSST en todo su rango de trabajo. Este nuevo procedimiento presenta una solución automåtica e integrada con tecnología låser tracker para aplicaciones de gran tamaño donde la precisión del sistema es un requerimiento clave para su buen funcionamiento.<br /

    Enhancement of machine tool accuracy : theory and implementation

    Get PDF
    • 

    corecore