36 research outputs found

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    A 2-Approximation for the Height of Maximal Outerplanar Graph Drawings

    Get PDF
    In this thesis, we study drawings of maximal outerplanar graphs that place vertices on integer coordinates. We introduce a new class of graphs, called umbrellas, and a new method of splitting maximal outerplanar graphs into systems of umbrellas. By doing so, we generate a new graph parameter, called the umbrella depth (ud), that can be used to approximate the optimal height of a drawing of a maximal outerplanar graph. We show that for any maximal outerplanar graph G, we can create a flat visibility representation of G with height at most 2ud(G) + 1. This drawing can be transformed into a straight-line drawing of the same height. We then prove that the height of any drawing of G is at least ud(G) + 1, which makes our result a 2-approximation for the optimal height. The best previously known approximation algorithm gave a 4-approximation. In addition, we provide an algorithm for finding the umbrella depth of G in linear time. Lastly, we compare the umbrella depth to other graph parameters such as the pathwidth and the rooted pathwidth, which have been used in the past for outerplanar graph drawing algorithms

    Area-Efficient Drawings of Outer-1-Planar Graphs

    Get PDF
    We study area-efficient drawings of planar graphs: embeddings of graphs on an integer grid so that the bounding box of the drawing is minimized. Our focus is on the class of outer-1-planar graphs: the family of planar graphs that can be drawn on the plane with all vertices on the outer-face so that each edge is crossed at most once. We first present two straight-line drawing algorithms that yield small-area straight-line drawings for the subclass of complete outer-1-planar graphs. Further, we give an algorithm that produces an orthogonal drawing of any outer-1-plane graph in O(n log n) area while keeping the number of bends per edge relatively small

    Universal Geometric Graphs

    Full text link
    We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is \emph{universal} for a class H\mathcal H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H\mathcal H. Our main result is that there exists a geometric graph with nn vertices and O(nlogā”n)O(n \log n) edges that is universal for nn-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an nn-vertex graph with O(nlogā”n)O(n \log n) edges that contains every nn-vertex forest as a subgraph. Our O(nlogā”n)O(n \log n) bound on the number of edges cannot be improved, even if more than nn vertices are allowed. We also prove that, for every positive integer hh, every nn-vertex convex geometric graph that is universal for nn-vertex outerplanar graphs has a near-quadratic number of edges, namely Ī©h(n2āˆ’1/h)\Omega_h(n^{2-1/h}); this almost matches the trivial O(n2)O(n^2) upper bound given by the nn-vertex complete convex geometric graph. Finally, we prove that there exists an nn-vertex convex geometric graph with nn vertices and O(nlogā”n)O(n \log n) edges that is universal for nn-vertex caterpillars.Comment: 20 pages, 8 figures; a 12-page extended abstracts of this paper will appear in the Proceedings of the 46th Workshop on Graph-Theoretic Concepts in Computer Science (WG 2020

    Preprocessing for Outerplanar Vertex Deletion: An Elementary Kernel of Quartic Size

    Get PDF
    In the ?-Minor-Free Deletion problem one is given an undirected graph G, an integer k, and the task is to determine whether there exists a vertex set S of size at most k, so that G-S contains no graph from the finite family ? as a minor. It is known that whenever ? contains at least one planar graph, then ?-Minor-Free Deletion admits a polynomial kernel, that is, there is a polynomial-time algorithm that outputs an equivalent instance of size k^{?(1)} [Fomin, Lokshtanov, Misra, Saurabh; FOCS 2012]. However, this result relies on non-constructive arguments based on well-quasi-ordering and does not provide a concrete bound on the kernel size. We study the Outerplanar Deletion problem, in which we want to remove at most k vertices from a graph to make it outerplanar. This is a special case of ?-Minor-Free Deletion for the family ? = {K?, K_{2,3}}. The class of outerplanar graphs is arguably the simplest class of graphs for which no explicit kernelization size bounds are known. By exploiting the combinatorial properties of outerplanar graphs we present elementary reduction rules decreasing the size of a graph. This yields a constructive kernel with ?(k?) vertices and edges. As a corollary, we derive that any minor-minimal obstruction to having an outerplanar deletion set of size k has ?(k?) vertices and edges

    Bounding and Computing Obstacle Numbers of Graphs

    Get PDF
    An obstacle representation of a graph G consists of a set of pairwise disjoint simply-connected closed regions and a one-to-one mapping of the vertices of G to points such that two vertices are adjacent in G if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each n-vertex graph is O(n log n) [Balko, Cibulka, and Valtr, 2018] and that there are n-vertex graphs whose obstacle number is Ī©(n/(log log n)Ā²) [Dujmović and Morin, 2015]. We improve this lower bound to Ī©(n/log log n) for simple polygons and to Ī©(n) for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of n-vertex graphs with bounded obstacle number, solving a conjecture by Dujmović and Morin. We also show that if the drawing of some n-vertex graph is given as part of the input, then for some drawings Ī©(nĀ²) obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances. We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph G is fixed-parameter tractable in the vertex cover number of G. Second, we show that, given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as the only obstacle

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF
    corecore