3,458 research outputs found

    Interactive visualization of information hierarchies and applications on the web

    Get PDF
    The visualization of information hierarchies is concerned with the presentation of abstract hierarchical information about relationships between various entities. It has many applications in diverse domains such as software engineering, information systems, biology, and chemistry. Information hierarchies are typically modeled by an abstract tree, where vertices are entities and edges represent relationships between entities. The aim of visualizing tree drawings is to automatically produce drawings of trees which clearly reflect the relationships of the information hierarchy. This thesis is primarily concerned with problems related to the automatic generation of area-efficient grid drawings of trees, interactively visualizing information hierarchies, and applying our techniques on Web data. The main achievements of this thesis include: 1. An experimental study on algorithms that produce planar straight-line grid drawings of binary trees, 2. An experimental study that shows the algorithm for producing planar straight-line grid drawings of degree-d trees with n nodes with optimal linear area and with user-defined arbitrary aspect ratio, works well in practice, 3. A rings-based technique for interactively visualizing information hierarchies, in real-time, 4. A survey of Web visualization systems developed to address the lost in cyberspace problem, 5. A separation-based Web visualization system that we present as a viable solution to the lost in cyberspace problem, 6. A rings-based Web visualization system that we propose as a solution to the lost in cyberspace problem

    Drawing Trees with Perfect Angular Resolution and Polynomial Area

    Full text link
    We study methods for drawing trees with perfect angular resolution, i.e., with angles at each node v equal to 2{\pi}/d(v). We show: 1. Any unordered tree has a crossing-free straight-line drawing with perfect angular resolution and polynomial area. 2. There are ordered trees that require exponential area for any crossing-free straight-line drawing having perfect angular resolution. 3. Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is represented by a circular arc) with perfect angular resolution and polynomial area. Thus, our results explore what is achievable with straight-line drawings and what more is achievable with Lombardi-style drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Tree Drawings Revisited

    Get PDF
    We make progress on a number of open problems concerning the area requirement for drawing trees on a grid. We prove that 1) every tree of size n (with arbitrarily large degree) has a straight-line drawing with area n2^{O(sqrt{log log n log log log n})}, improving the longstanding O(n log n) bound; 2) every tree of size n (with arbitrarily large degree) has a straight-line upward drawing with area n sqrt{log n}(log log n)^{O(1)}, improving the longstanding O(n log n) bound; 3) every binary tree of size n has a straight-line orthogonal drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Shin, Kim, and Chwa (1996) and Chan, Goodrich, Kosaraju, and Tamassia (1996); 4) every binary tree of size n has a straight-line order-preserving drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Garg and Rusu (2003); 5) every binary tree of size n has a straight-line orthogonal order-preserving drawing with area n2^{O(sqrt{log n})}, improving the O(n^{3/2}) previous bound by Frati (2007)

    Quad general tree drawing algorithm and general trees characterization: towards an environment for the experimental study on general tree drawing algorithms

    Get PDF
    Information visualization produces (interactive) visual representations of abstract data to reinforce human cognition and perception; thus enabling the viewer to gain knowledge about the internal structure of the data and causal relationships in it. The visualization of information hierarchies is concerned with the presentation of abstract hierarchical information about relationships between various entities. It has many applications in diverse domains such as software engineering, information systems, biology, and chemistry. Information hierarchies are typically modeled by an abstract tree, where vertices are entities and edges represent relationships between entities. The aim of visualizing tree drawings is to automatically produce drawings of trees which clearly reflect the relationships of the information hierarchy. This thesis is primarily concerned with introducing the new general tree drawing algorithm Quad that produces good visually distinguishable angles, and a characterization of general trees which allows us to classify general trees into several types based on their characteristics. Both of these topics are part of building an experimental study environment for the evaluation of drawing algorithms for general trees. The main achievements of this thesis include: 1. A study on characterization of general trees that aims to classify them into several types. 2. A tree drawing algorithm that produces visually distinguishable angles for high degree general trees with user specified angular coefficient

    How to fit a tree in a box

    Get PDF
    We study compact straight-line embeddings of trees. We show that perfect binary trees can be embedded optimally: a tree with n nodes can be drawn on a vn by vn grid. We also show that testing whether a given rooted binary tree has an upward embedding with a given combinatorial embedding in a given grid is NP-hard.Peer ReviewedPostprint (author's final draft

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlog⁥n)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(log⁥n)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlog⁥n)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi
    • 

    corecore