819 research outputs found

    Straightening out planar poly-line drawings

    Full text link
    We show that any yy-monotone poly-line drawing can be straightened out while maintaining yy-coordinates and height. The width may increase much, but we also show that on some graphs exponential width is required if we do not want to increase the height. Likewise yy-monotonicity is required: there are poly-line drawings (not yy-monotone) that cannot be straightened out while maintaining the height. We give some applications of our result.Comment: The main result turns out to be known (Pach & Toth, J. Graph Theory 2004, http://onlinelibrary.wiley.com/doi/10.1002/jgt.10168/pdf

    Track Layouts of Graphs

    Full text link
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad

    Diffuse LEED intensities of disordered crystal surfaces : III. LEED investigation of the disordered (110) surface of gold

    Get PDF
    The LEED pattern of clean (101) surfaces of Au show a characteristic (1 × 2) superstructure. The diffuseness of reflections in the reciprocal [010] direction is caused by one-dimensional disorder of chains, strictly ordered into spatial [10 ] direction. There is a transition from this disordered superstructure to the normal (1 × 1) structure at 420 + 15°C. The angular profiles of the and (01) beam are measured at various temperatures and with constant energy and angles of incidence of the primary beam. The beam profiles are deconvoluted approximately with the instrument response function

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    • …
    corecore