4,035 research outputs found

    Forward model for quantitative pulse-echo speed-of-sound imaging

    Get PDF
    Computed ultrasound tomography in echo mode (CUTE) allows determining the spatial distribution of speed-of-sound (SoS) inside tissue using handheld pulse-echo ultrasound (US). This technique is based on measuring the changing phase of beamformed echoes obtained under varying transmit (Tx) and/or receive (Rx) steering angles. The SoS is reconstructed by inverting a forward model describing how the spatial distribution of SoS is related to the spatial distribution of the echo phase shift. CUTE holds promise as a novel diagnostic modality that complements conventional US in a single, real-time handheld system. Here we demonstrate that, in order to obtain robust quantitative results, the forward model must contain two features that were not taken into account so far: a) the phase shift must be detected between pairs of Tx and Rx angles that are centred around a set of common mid-angles, and b) it must account for an additional phase shift induced by the error of the reconstructed position of echoes. In a phantom study mimicking liver imaging, this new model leads to a substantially improved quantitative SoS reconstruction compared to the model that has been used so far. The importance of the new model as a prerequisite for an accurate diagnosis is corroborated in preliminary volunteer results

    Quantitative Ultrasound and B-mode Image Texture Features Correlate with Collagen and Myelin Content in Human Ulnar Nerve Fascicles

    Get PDF
    We investigate the usefulness of quantitative ultrasound (QUS) and B-mode texture features for characterization of ulnar nerve fascicles. Ultrasound data were acquired from cadaveric specimens using a nominal 30 MHz probe. Next, the nerves were extracted to prepare histology sections. 85 fascicles were matched between the B-mode images and the histology sections. For each fascicle image, we selected an intra-fascicular region of interest. We used histology sections to determine features related to the concentration of collagen and myelin, and ultrasound data to calculate backscatter coefficient (-24.89 dB ±\pm 8.31), attenuation coefficient (0.92 db/cm-MHz ±\pm 0.04), Nakagami parameter (1.01 ±\pm 0.18) and entropy (6.92 ±\pm 0.83), as well as B-mode texture features obtained via the gray level co-occurrence matrix algorithm. Significant Spearman's rank correlations between the combined collagen and myelin concentrations were obtained for the backscatter coefficient (R=-0.68), entropy (R=-0.51), and for several texture features. Our study demonstrates that QUS may potentially provide information on structural components of nerve fascicles

    Photoacoustic imaging in biomedicine

    Get PDF
    Photoacoustic imaging (also called optoacoustic or thermoacoustic imaging) has the potential to image animal or human organs, such as the breast and the brain, with simultaneous high contrast and high spatial resolution. This article provides an overview of the rapidly expanding field of photoacoustic imaging for biomedical applications. Imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography with unfocused transducers, are introduced. Special emphasis is placed on computed tomography, including reconstruction algorithms, spatial resolution, and related recent experiments. Promising biomedical applications are discussed throughout the text, including (1) tomographic imaging of the skin and other superficial organs by laser-induced photoacoustic microscopy, which offers the critical advantages, over current high-resolution optical imaging modalities, of deeper imaging depth and higher absorptioncontrasts, (2) breast cancerdetection by near-infrared light or radio-frequency–wave-induced photoacoustic imaging, which has important potential for early detection, and (3) small animal imaging by laser-induced photoacoustic imaging, which measures unique optical absorptioncontrasts related to important biochemical information and provides better resolution in deep tissues than optical imaging

    Improving needle visibility in LED-based photoacoustic imaging using deep learning with semi-synthetic datasets

    Get PDF
    Photoacoustic imaging has shown great potential for guiding minimally invasive procedures by accurate identification of critical tissue targets and invasive medical devices (such as metallic needles). The use of light emitting diodes (LEDs) as the excitation light sources accelerates its clinical translation owing to its high affordability and portability. However, needle visibility in LED-based photoacoustic imaging is compromised primarily due to its low optical fluence. In this work, we propose a deep learning framework based on U-Net to improve the visibility of clinical metallic needles with a LED-based photoacoustic and ultrasound imaging system. To address the complexity of capturing ground truth for real data and the poor realism of purely simulated data, this framework included the generation of semi-synthetic training datasets combining both simulated data to represent features from the needles and in vivo measurements for tissue background. Evaluation of the trained neural network was performed with needle insertions into blood-vessel-mimicking phantoms, pork joint tissue ex vivo and measurements on human volunteers. This deep learning-based framework substantially improved the needle visibility in photoacoustic imaging in vivo compared to conventional reconstruction by suppressing background noise and image artefacts, achieving 5.8 and 4.5 times improvements in terms of signal-to-noise ratio and the modified Hausdorff distance, respectively. Thus, the proposed framework could be helpful for reducing complications during percutaneous needle insertions by accurate identification of clinical needles in photoacoustic imaging

    Variations during ageing in the three-dimensional anatomical arrangement of fascicles within the equine superficial digital flexor tendon

    Get PDF
    Tendons are constructed from collagenous fascicles separated by endotenon/interfascicular matrix (IFM). Tendons may be specialised for precision movement or to store energy during locomotion and for the latter the elasticity of the endotenon/IFM is particularly important. The equine superficial digital flexor tendon (SDFT) is a dedicated energy-storing tendon with a similar function to the human Achilles tendon. Classical anatomical descriptions portray fascicles as longitudinally arranged distinct anatomical structures. In the present study, using three-dimensional reconstruction from whole tissue slices and histological sections, the fascicles of the equine SDFT were found to adopt a complex interweaved arrangement. Fascicles were found to fully and partially converge and diverge within the tendon and fascicle bundles were observed. Fascicle morphology was not homogenous with narrowing, broadening and twisted fascicles observed in addition to relatively straight fascicles. The number of fascicle bundles observed in cross-section increased from the proximal to the distal end of the tendon, whilst the number of fascicles decreased with age in the proximal region. Fascicular patterns were not similar between the left and right limbs, across different regions or at different ages. A decrease in thickness of the endotenon/IFM between fascicles with age was found in the distal tendon region. The results provide a rationale for considering fascicular organisation when diagnosing and treating tendon injuries, for bioengineering tendon and when modelling tendon function

    Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation

    Get PDF
    Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows

    Parallel Acoustic Delay Line (PADL) Arrays for Photoacoustic Imaging Applications

    Get PDF
    Micromachining process, such as laser micromachining and IC microfabrication process, allows production of complex structures in limited space, which reduces both the size and cost of hardware. In this research, using the advantages of micromachining processes, parallel acoustic delay line (PADL) arrays made of optical fibers and single-crystalline silicon (SCS) have been developed to reduce the number of ultrasonic transducers and data acquisition (DAQ) electronics for real-time photoacoustic tomography (PAT). The PADL arrays allow real-time PAT with the significantly reduced number of ultrasonic transducers and DAQs. Handheld optical PADL array enables more practical operation for photoacoustic imaging applications by miniaturizing previously developed optical PADL array. Sixteen channels of optical fiber PADLs were fabricated and assembled with laser micromachined acrylic housing for the compact structure. By conducting ultrasonic transmission testing, acoustic properties of optical fibers have been characterized. PA imaging capability of optical fiber PADL array has been evaluated by PA imaging experiment. Microfabrication process makes it possible to use single-crystalline silicon as a material for acoustic delay lines. Acoustic properties of silicon were characterized by ultrasonic transmission testing. Based on the characterization result, silicon acoustic delay line was designed into a spiral coil shape to minimize the overall size. Silicon PADLs are better than optical fiber PADL for miniaturization due to the advantages of microfabrication process. Silicon PADL array achieved a channel reduction ratio of 16:1, which is twice the ratio of optical fiber PADL. The PA imaging experiment has demonstrated the PA imaging capability of silicon PADL array. For fast imaging speed and good spatial resolution, silicon PADL array has been improved by applying 3D-printed linker structures and tapered input terminal. Linker structure design has been evaluated by both structural and acoustic simulation. The final design of linker structure is 3D-printed polymer linker to securely hold silicon delay lines with minimal contacts. Tapered input terminal was designed to reduce acoustic acceptance angle for better spatial resolution. Tapered input terminal was evaluated by acoustic simulation with different designs. Those designs and techniques are expected to provide new solutions to reduce the cost and complexity of ultrasonic receiving systems for photoacoustic imaging applications

    A method for delineation of bone surfaces in photoacoustic computed tomography of the finger

    Get PDF
    Photoacoustic imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the photoacoustic signals known to originate from the epidermis, are treated as virtual ultrasound transmitters, and a separate reconstruction is performed as in ultrasound reflection imaging. This allows us to identify the bone surfaces. Further, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us not only to identify the artifacts, but also to identify the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger
    • …
    corecore